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1 The Construction of The Real Numbers

1 The Construction of The Real Numbers

1.1 The Incompleteness of The Rationals

Q is not complete . . . , there are holes. Here’s an example.

1.2 Dedekind Cuts and Addition

1.3 Multiplication of Dedekind Cuts

Throughout, let α, β, γ denote three real numbers.

Proposition 1.3.1: Neutrality of 0
α · 0 = 0.

Proof. Suppose first that α ≥ 0 and write α = A|A′. By definition, the lower set of the product α · 0
is {xy : x ∈ A ∩ Q≥0, y ∈ Q<0 ∩ Q≥0} ∪ Q<0. As Q<0 ∩ Q≥0 = ∅, it follows that the lower set of α · 0
is Q<0, and hence α · 0 = 0. If α < 0, then −α > 0 and so by definition

α · 0 = −((−α) · 0) = −0

By the uniqueness of additive inverses and additive identity property of addition, it follows that −0 = 0
and hence α · 0 = 0.

Proposition 1.3.2: Closure
α · β is a real number

Proof. It suffices to prove this in the case that α, β > 0. Note that by definition −1 ∈ α · β, and so
α · β ̸= ∅. Moreover as α, β ̸= Q, we can find positive rational numbers x ∈ Q \ α, y ∈ Q \ β. Thus
x > a for all a ∈ α and y > b for all b ∈ β, so xy > ab and hence xy /∈ α · β, thus α · β ̸= Q. Now let
z ∈ α · β, q ∈ Q and suppose q < z. If q ≤ 0, then q ∈ α · β immediately. If q > 0, then 0 < q < z and
so there is a ∈ α ∩ Q>0, b ∈ β ∩ Q>0 such that z = ab. Note that as 0 < q < z, we have 0 < q

z < 1,
and so 0 < a

( q
z

)
< a, namely a

( q
z

)
∈ α. Finally, we have

q = qz

z
=
[
a

(
q

z

)]
︸ ︷︷ ︸

∈α

b︸︷︷︸
∈β

and so q ∈ α · β. Lastly, we show α · β has no maximum. Let z ∈ α · β. If z ≤ 0, as α, β > 0, there
is a ∈ α ∩ Q>0, b ∈ β ∩ Q>0, and so z ≤ 0 < ab, where ab ∈ α · β. If z > 0, by definition there is
a ∈ α ∩Q>0 and b ∈ β ∩Q>0 such that z = ab. Moreover as neither α nor β achieve their maximums,
we can find â ∈ α, b̂ ∈ β such that â > a, b̂ > b. Thus, z = ab < âb̂ where âb̂ ∈ α · β, and so α · β is a
real number.

Proposition 1.3.3: Commutativity
α · β = β · α.
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1 The Construction of The Real Numbers 1.3 Multiplication of Dedekind Cuts

Proof.

Lemma 1.3.4
−(−α) = α and (−α) · β = −(α · β).

Proof. Exercise.

Proposition 1.3.5: Associativity

α · (β · γ) = (α · β) · γ.

Proof.

Proposition 1.3.6: Multiplicative identity
α · 1 = α = 1 · α.

Proof.

Lemma 1.3.7
If q ∈ Q and q > 1, then set S = {qn : n ∈ N} is unbounded from above, namely for any M ∈ Q,
there is n ∈ N such that qn > M .

Proof. Exercise. Hint: It suffices to prove by induction that qn ≥ 1 + n(q − 1) for all n ∈ N.

Lemma 1.3.8
If q ∈ Q and 0 < q < 1, then α ∩ {qn : n ∈ N} ≠ ∅ for any real number α > 0.

Proof. Exercise. Hint: Use the fact that 1
q > 1 and the result in the hint given in Lemma 2.

Definition 1.3.9: Multiplicative Inverses

For α > 0, we define the set α−1 by

α−1 =
{

x ∈ Q>0 : 1
x ∈ Q \ α and 1

x is not the minimum of Q \ α
}

∪ Q≤0

If α < 0, we define α−1 = −(|α|)−1 = −((−α)−1).

As one would expect, α−1 should satisfy α−1α = 1. This won’t follow directly from the definition, but
it is something that we can prove. Before we can do so, we need to verify that α−1 is actually a real
number first.

Proposition 1.3.10: Closure

If α ̸= 0, then α−1 is a real number.

(c) Nigel Petersen 4



1 The Construction of The Real Numbers 1.4 Dedekind’s Theorem

Proof. Again, it suffices to prove this in the case that α > 0. Clearly −1 ∈ α−1, so α−1 ̸= ∅. Similarly,
as α > 0, we can find a positive rational number x ∈ α. Then 1

x /∈ α−1 as 1/
(

1
x

)
= x ∈ α, and so

α−1 ̸= Q. Now let z ∈ α−1, q ∈ Q and suppose q < z. If q ≤ 0, then q ∈ α−1 immediately. If q > 0,
then 0 < q < x and so 0 < 1

x < 1
q and since 1

x ∈ Q \ α, we must have 1
q ∈ Q \ α and thus q ∈ α−1.

Finally, we show α−1 has no maximum, where we will implicitly show that α−1 > 0. Let x ∈ α−1

and suppose x ≤ 0. Since α > 0 and α ̸= Q, there is a ∈ Q>0 such that a ∈ Q \ α, moreover we may
assume a is not the minimum of Q \ α by taking any rational number larger than a. Then 1

a ∈ α−1,
and so x ≤ 0 < 1

a . If x > 0, then we have 1
x ∈ Q \ α and there is some y ∈ Q \ α such that y < 1

x as 1
x

is not the minimum of Q \ α. Choose some q ∈ Q such that y < q < 1
x , then 1

q ∈ α−1 as q > y ⇒/∈ α

and x < 1
q . Thus α−1 is a real number.

Proposition 1.3.11: Multiplicative inverses

If α ̸= 0, then α · α−1 = 1.

Proof.

1.4 Dedekind’s Theorem

1.5 Consequences of Completeness

Theorem 1.5.1: Criterion for Supremum

Let A ⊆ R be a non-empty set, bounded above. For any upper bound M ∈ R of A, M = sup(A)
if and only if for every ε > 0, there is a ∈ A such that

M − ε < a ≤ M

Proof. (⇒) By the minimality of M = sup(A), M − ε is not an upper bound for any ε > 0, and hence
there is a ∈ A such that α − ε < a.

(⇐) As M is an upper bound, we have sup(A) ≤ M , suppose towards a contradiction sup(A) < M .
By assumption there is a ∈ A such that a > M −(M −sup(A)) = sup(A), which is a contradiction.

Proposition 1.5.2: Completeness for Infima
Let A ⊆ R be a non-empty set, bounded below. Then

− sup({−a : a ∈ A})

is the greatest lower bound for A.

(c) Nigel Petersen 5



2 Limits and Continuity

2 Limits and Continuity

Limits are likely a familiar notion from high school calculus, they help us describe the behaviour
of a function in a small area around a particular point. Limits are the building blocks of Calculus
and Analysis, all of the important concepts we will cover – Continuity, Differentiability, Integrability,
Sequences and Series – are all based around limits. With that in mind, it is imperative that you are
able to grasp the concepts outlined in this section, as without them the rest of the course will surely
be an uphill battle.

2.1 Limits of Functions

Let’s begin in (hopefully) a familiar territory – limits of functions. This was likely covered in high
school calculus, but here we are looking to take a more formal approach to the idea of a limit. Our
formal definition of a limit will be a tool that we will use very frequently throughout the section and
the rest of the notes.

Definition 2.1.1: Formal Limits
Let a ∈ R and f : U → R a function defined in a neighbourhood of a, except possibly at a.
We say that the limit of f as x approaches a is L, written limx→a f(x) = L, if for every ε > 0,
there is δ > 0 such that for all x ∈ U , if 0 < |x − a| < δ, then |f(x) − L| < ε.

The formal definition of a limit will probably seem very scary and complicated at first, and that’s
ok. Let’s take a step back and look at things informally. To start, it is imperative that you view
an inequality of the form |f(x) − L| < ε as saying that “the distance between f(x) and L is less
than ε.” namely that the absolute value of the difference should be understood to be a distance. It’s
also important to view ε > 0 as a pre-specified error term, namely ε > 0 represents the error on
our approximation of the value L by using values of the form f(x) for x close to a. From here, the
definition reads as follows:

Given an error bound ε > 0, we can find δ > 0 so that for any x in the domain of our function, if the
distance between x and a is smaller than δ and x ̸= a, then we can guarantee the distance between

f(x) and L is smaller than our error bound ε > 0

We’re going to be working with this definition quite a lot, so let’s spend some time going through
several examples to get our hands dirty.

Example 2.1.2: An Illustration
Let a, L ∈ R and f : R → R be a function. Suppose that there is some K > 0 such that
|f(x) − L| ≤ K|x − a| for all x ∈ R. Prove that limx→a f(x) = L.

Solution. The purpose of this example is to illustrate a general approach for solving problems and
writing proofs involving limits. Let ε > 0. The key is to note that if K|x − a| < ε, then follows that

|f(x) − L| ≤ K|x − a| < ε

Note that K|x − a| < ε is equivalent to |x − a| < ε
K . Recall from Definition 2.1.1 that δ is allowed to

depend on ε, and so a good choice for δ would be δ = ε
K > 0. To verify this, let x ∈ R and assume

(c) Nigel Petersen 6



2 Limits and Continuity 2.1 Limits of Functions

that 0 < |x − a| < δ. Then, it follows that

|f(x) − L| ≤ K|x − a| < Kδ = K
ε

K
= ε

Thus, by Definition 2.1.1, we conclude that limx→a f(x) = L.

Annecdote about doing rough work and generalizing the previous example

Example 2.1.3

Prove that limx→4(3x + 7) = 19.

Proof.

Example 2.1.4: Limits of Linear Functions

Let a, b, m ∈ R with m ̸= 0. Prove that limx→a(mx + b) = ma + b.

Proof. Let ε > 0 and pick δ = ε
|m| > 0. Given x ∈ R, it follows that

0 < |x − a| < δ =⇒ |(mx + b) − (ma + b)| = |m||x − a| < |m|δ = ε

Example 2.1.5

Prove that limx→2(x2 − x + 7) = 9.

Proof.

Example 2.1.6

Prove that limx→1
(

x+5
x+2

)
= 2.

Proof.

Example 2.1.7

Prove that limx→4
√

x + 5 = 3.

Proof.

Example 2.1.8: A Non-Example
Define the piecewise function f : R → R by

f(x) =
{

x x ̸= −3
0 x = −3

Prove that limx→−3 f(x) ̸= 0.

(c) Nigel Petersen 7



2 Limits and Continuity 2.2 Types of Limits

Proof.

Example 2.1.9: Non-Existent Limit

Consider the function f : R \ {0} → R defined by f(x) = x
|x| . Prove that limx→0 f(x) does not

exist.

Proof.

2.2 Types of Limits

So far, we have discussed the local behaviour of a function in a two-sided neighbourhood of a point
in its domain. There may be times in our study that we are only interested in the behaviour of our
function on one of the two sides of a given point. For example, suppose f : [0, ∞) → R is defined by
f(x) =

√
x. We cannot study the behaviour of the function for any values a < 0 since f is not defined

there. So to investigate the behaviour of f near 0, we would be doing so to the right of 0. We can
formalize this idea of a one-sided limit to get the following definition.

Definition 2.2.1: One-Sided Limits
Let a ∈ R and suppose f : (a, a + ρ1) → R and g : (a − ρ2, a) → R are functions, for some
ρ1, ρ2 > 0. We say that

1. The limit of f as x approaches a from the right is L1, written limx→a+ f(x) = L1, if for all
ε > 0, there is δ > 0 such that for all x ∈ (a, a + ρ1); if x ∈ (a, a + δ) then |f(x) − L1| < ε.

2. The limit of g as x approaches a from the left is L2, written limx→a− g(x) = L2, if for all
ε > 0, there is δ > 0 such that for all x ∈ (a − ρ2, a); if x ∈ (a − δ, a) then |g(x) − L2| < ε.

Recall that we can write |x − a| < δ as x ∈ (a − δ, a + δ). Thus, if we also impose that 0 < |x − a|,
namely x ̸= a, we can say that

0 < |x − a| < δ ⇐⇒ x ∈ (a − δ, a) ∪ (a, a + δ)

This is precisely what we mean when we say that one sided limits capture the behaviour of a function
one one side of a particular point, either the right (values larger) or the left (values smaller).

Example 2.2.2

Prove that limx→4+ x
√

x − 4 = 0.

Proof.

One thing you may be wondering is how we can infer information about a two-sided limit using one
sided-limits. It should hopefully be intuitive that if a two-sided limit exists, then so too should the
one sided limits and moreover their values should all be the same. The converse however is also true,
as demonstrated by the following important result.

(c) Nigel Petersen 8



2 Limits and Continuity 2.2 Types of Limits

Proposition 2.2.3: Criterion for Two-sided Limits
Let a ∈ R and f : U → R a function defined on a neighbourhood of a, except possibly at a.
Then

lim
x→a

f(x) = L ⇐⇒ lim
x→a−

f(x) = L = lim
x→a+

f(x)

Proof.

The remaining types of limits we will explore in this section deal with infinity. Namely when we are
interested in the behaviour of our function as x approaches either positive or negative infinity, as well
as what it means for the limit, as x approaches a finite value, of a function to be either positive or
negative infinity. The definitions will mostly be the same as what we’ve seen, however we will have to
change either

0 < |x − a| < δ or |f(x) − L| < ε

to account for infinities. Intuitively, a limit should equal positive (negative) infinity if we can always
make the value of the function larger (smaller) than any real number. Let’s make this precise

Definition 2.2.4: Infinite Limits and Vertical Asymptotes
Let a ∈ R and f : U → R a function defined on a neighbourhood of a, except possibly at a. We
say that the limit of f as x approaches a is positive (negative) infinity, written limx→a f(x) = ∞
(limx→a f(x) = −∞) if for all M ∈ R, there is δ > 0 such that for all x ∈ U ; if 0 < |x − a| < δ
then f(x) > N (f(x) < N).

We say that f has a vertical asymptote at a if either limx→a+ f(x) = ±∞ or limx→a− f(x) = ±∞.

Example 2.2.5

Prove that limx→0−
1

x2 = 0.

Proof.

Example 2.2.6
Prove that limx→1−

x
x2−1 = ∞.

Proof.

Analogously, if we want to formalize what it means for a function to approach a finite value L as
x → ±∞, we can do so as follows

(c) Nigel Petersen 9



2 Limits and Continuity 2.3 Properties of Limits

Definition 2.2.7: Limits at Infinity and Horizontal Asymptotes

Let a ∈ R and suppose f : (a, ∞) → R, g : (−∞, a) → R are functions. We say that

1. The limit of f as x approaches positive infinity is L1, written limx→∞ f(x) = L1, if for all
ε > 0, there is N ∈ R such that for all x ∈ (a, a + ∞); if x > N then |f(x) − L1| < ε.

2. The limit of g as x approaches negative infinity is L2, written limx→∞ g(x) = L2, if for
all ε > 0, there is N ∈ R such that for all x ∈ (a − ∞, a); if x < N then |g(x) − L2| < ε.

In such cases, we say that f and g have horizontal asymptotes of L1 and L2.

Example 2.2.8

Prove that limx→∞
(

6x−2
3x+7

)
= 2

Proof.

There is a nice relationship we can formulate between limits at infinity and one-sided limits. It hinders
on the observation that if x is very small and positive, then 1

x is very large, and vice versa (analogously
for the negative case). This leads to the following transformation rule.

Proposition 2.2.9: Transformation I
Let f : R → R be a function. Then

1. limx→∞ f
(

1
x

)
= L if and only if limx→0+ f(x) = L.

2. limx→−∞ f
(

1
x

)
= L if and only if limx→0− f(x) = L.

comments on the converse and generalizations

2.3 Properties of Limits

In this section, our goal is to make less work for ourselves later on. Namely, we can derive some useful
properties of limits so that we don’t have to resort to using the definition every time. To start, we
can address an issue of well-definedness, namely that the limit of a function is unique (assuming that
it exists) and that we are correct in saying the limit.

Proposition 2.3.1: Uniqueness of Limits
Suppose a ∈ R and f : U → R is a function defined on a neighbourhood of a, except possibly
at a. If limx→a f(x) = L and limx→a f(x) = M , then L = M .

Proof.

From here, we can get into what is likely one of the main theorems that you learned in high school,
the limit laws. This result will allow us to compute new limits from old ones, and will save us a lot of
work later on! For now, there are a few small results we will need ahead of time before we can actually
prove the limits laws.

(c) Nigel Petersen 10



2 Limits and Continuity 2.3 Properties of Limits

Lemma 2.3.2: Local Boundedness
Let a ∈ R and f : U → R a function defined in a neighbourhood of a, except possibly at a. If
limx→a f(x) = L, then there is B, D > 0 and δ1, δ2 > 0 such that

1. |f(x)| ≤ B for all x such that 0 < |x − a| < δ1.

2. |f(x)| ≥ D for all x such that 0 < |x − a| < δ2, assuming that L ̸= 0.

Proof.

Now that we have everything we need, we can jump into proving the limit laws.

discussion about the ε
2 trick and the min{δ1, δ2} trick.

Theorem 2.3.3: The Limit Laws
Let a ∈ R, f, g : U → R functions defined in a neighbourhood of a, except possibly at a, and
assume that limx→a f(x) = L and limx→a g(x) = M . Then

1. limx→a[f(x) + g(x)] = L + M .

2. limx→a αf(x) = αL for all α ∈ R.

3. limx→a f(x)g(x) = LM .

4. limx→a
1

f(x) = 1
L , assuming L ̸= 0.

Proof.

Another familiar result from high school calculus is likely that of the squeeze theorem. Here we will
state and prove a stronger version of it by only assuming that the inequalities hold locally rather than
globally.

Theorem 2.3.4: Squeeze Theorem
Let a ∈ R and f, g, h : U → R be functions defined in a neighbourhood of a, except possibly at
a. If limx→a f(x) = L = limx→a h(x) and there is δ > 0 such that for all 0 < |x−a| < δ we have

f(x) ≤ g(x) ≤ h(x)

Then limx→a g(x) = L.

Proof.

Proposition 2.3.5: Order and Limits

Let a ∈ R, ρ > 0 and f, g : (a−ρ, a)∪(a, a+ρ) → R functions for which limx→a f(x), limx→a g(x)
both exist and f(x) ≤ g(x) for all x ∈ (a − ρ, a) ∪ (a, a + ρ). Then

lim
x→a

f(x) ≤ lim
x→a

g(x)

Proof.

(c) Nigel Petersen 11



2 Limits and Continuity 2.4 Continuity and Uniform Continuity

Theorem 2.3.6: Monotone Convergence

Let a ∈ R and suppose f : [a, ∞) → R is a bounded, increasing function. Then

lim
x→∞

f(x) = sup
x≥a

f(x)

Proof. Let ε > 0 and define the set A = {f(x) : x ≥ a}. As f is bounded, A is bounded by Definition
?? and A is non-empty as f(a) ∈ A by construction. Thus, by completeness, sup(A) exists. By
Theorem ??, there is x0 ≥ a for which

sup(A) − ε < f(x0) ≤ sup(A) < sup(A) + ε

Finally, by the monotonicity of f , for any x ∈ R such that x > x0, we have

sup(A) − ε < f(x0) ≤ f(x)︸ ︷︷ ︸
monotonicity

≤ sup(A) < sup(A) + ε ⇐⇒ |f(x) − sup(A)| < ε

Theorem 2.3.7: Monotone One-sided Limits
Let f : R → R be a monotone function. Then for every a ∈ R

lim
x→a+

f(x) = inf
x>a

f(x) and lim
x→a−

f(x) = sup
x<a

f(x)

Proof. This is very similar to the proof of the monotone convergence theorem. Define the sets

A− = {f(x) : x < a} and A+ = {f(x) : x > a}

By our assumption that f is monotone increasing, we have that A− is bounded above and A+ is
bounded below, both by f(a), so sup(A−) and inf(A+) both exist. We start by showing the left hand
limit at a is sup(A−). Let ε > 0, by Theorem ?? there is y ∈ A− such that sup(A−) − ε < y, namely
writing y = f(x0) for some x0 < a, we have sup(A−) − ε < f(x0). Let δ = a − x0 > 0, then for any
x ∈ (a − δ, a), we have x0 < x < a, and so as f is strictly increasing

sup(A−) − ε < f(x0) < f(x) ≤ sup(A−) < sup(A−) + ε

Thus, sup(A−) − ε < f(x) < sup(A−) + ε, namely |f(x) − sup(A−)| < ε. A similar argument shows
that the right hand limit is inf(A+).

2.4 Continuity and Uniform Continuity

In this section we will introduce one of the most important concepts in the course, that of continuity
and continuous functions. Continuity is likely not an unfamiliar concept, however, the mantra that “a
function is continuous if you can draw its graph without lifting your pencil off of the paper” simply
will not do. Luckily for us, the formal definition of continuity is very similar to our definition of a
limit, with some notable differences.

Definition 2.4.1: Continuity
Let a ∈ R and f : U → R a function defined in a neighbourhood of a. We say that f is
continuous at a if limx→a f(x) = f(a). We say that f is continuous if f is continuous at a for
all a ∈ U . Finally, if U = R and f is continuous, we will say that f is everywhere continuous,
namely if f is continuous at a for all a ∈ R.

(c) Nigel Petersen 12



2 Limits and Continuity 2.4 Continuity and Uniform Continuity

Note that in order for a function to be continuous at a point, it must be defined at the point in
question. By using our definition of a limit, we can say that f is continuous at a if

for all ε > 0, there is δ > 0 such that for all x ∈ U ; if |x − a| < δ then |f(x) − f(a)| < ε.

Note that this is essentially our original limit definition with L = f(a). The only other difference is
that we don’t require 0 < |x − a|. Since f is defined at a, clearly |a − a| = 0 < δ for any δ > 0, and
moreover |f(a) − f(a)| = 0 < ε for any ε > 0. Thus, we do not need to enforce that x ̸= a.

Example 2.4.2
Prove that each of the following functions are continuous.

1. f : R → R defined by f(x) = |x|.

2. g : [0, ∞) → R defined by g(x) =
√

x.

Proof.

comments about pathological functions and the need for a rigorous definition

Example 2.4.3: A Nowhere Continuous Function
We define the characteristic function of the rationals, or Dirichlet’s function D : R → R by

D(x) =
{

1 x ∈ Q
0 x ∈ R \ Q

Prove that D is continuous nowhere, namely D is discontinuous at a for all a ∈ R.

Proof.

Example 2.4.4: Thomae’s Function
We define Thomae’s Function T : R → R as follows

T (x) =
{1

q x = p
q ∈ Q, p ∈ Z, q ∈ N, gcd(p, q) = 1

0 x ∈ Qc ∪ {0}

Prove that limx→a T (x) = 0 for all a ∈ R and conclude on the continuity of Thomae’s function.

Proof.
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2 Limits and Continuity 2.4 Continuity and Uniform Continuity

Proposition 2.4.5: Change of Variables
Let a, L ∈ R and g : U → R, f : V → R functions defined on neighbourhoods U of a and V of
L, except possibly at the respective points, such that limx→a g(x) = L and limx→L f(x) = M .
If either of the conditions:

1. f is defined at L and M = f(L) (namely f is continuous at L).

2. There is ρ > 0 for which g(x) ̸= L for all x ∈ (a − ρ, a) ∪ (a, a + ρ).

hold, then limx→a(f ◦ g)(x) = M .

Proof.

Corollary 2.4.6: Continuity and Composition

Let a ∈ R and g : U → R, f : V → R be functions continuous at a and g(a) respectively, where
g(U) ⊆ V . Then f ◦ g : U → R is continuous at a.

Proof.

Definition 2.4.7: Types of Discontinuities

Definition 2.4.8: Uniform Continuity
Consider D ⊆ R and a function f : D → R. We say that f is uniformly continuous if for all
ε > 0, there is δ > 0 such that for all x, y ∈ D, if |x − y| < δ then |f(x) − f(y)| < ε.

comments about the definition, distinction from regular pointwise continuity.

Example 2.4.9
Prove that each of the following functions are uniformly continuous.

1. f : [1, ∞) → R defined by f(x) = 1
x .

2. g : [0, ∞) → R defined by g(x) =
√

x.

Proof. (1) Let ε > 0 be given and choose δ = ε. Let x, y ∈ [1, ∞) be given, Note that x, y ≥ 1 so
xy ≥ 1 and moreover

|f(x) − f(y)| =
∣∣∣∣1x − 1

y

∣∣∣∣ = |x − y|
xy

≤ |x − y| < δ < ε

(2) Let ε > 0 be given, and choose δ

comments on the above example, set up for the proceeding theorem.

Theorem 2.4.10: Criterion for Uniform Continuity

If f : [a, b] → R is continuous, then f is uniformly continuous.

(c) Nigel Petersen 14



2 Limits and Continuity 2.4 Continuity and Uniform Continuity

Proof. Let ε > 0, and define the following set

U = {c ∈ [a, b] : ∃δ > 0 such that ∀x, y ∈ [a, c], |x − y| < δ ⇒ |f(x) − f(y)| < ε}

U is the collection of points c ∈ [a, b] for which f is uniformly continuous on [a, c] given ε > 0. Our
goal will be to show U = [a, b]. Note that a ∈ U as [a, a] = {a}, and so any δ > 0 will work. Also,
U ⊆ [a, b] by construction, so c ≤ b for all c ∈ U . Thus, α := sup(U) exists by completeness, and
α ≤ b. We want to show U = [a, b], so we need to show b ∈ U . Suppose α < b, as f is continuous at
α, there is δ1 > 0 such that for all x ∈ [a, b], |x − α| < δ1 ⇒ |f(x) − f(α)| < ε

2 . By the criterion for
supremum, there is c ∈ U such that α − δ1 < c ≤ α, and as c ∈ U , there is δ2 > 0 such that for all
x, y ∈ [a, c], |x − y| < δ2 ⇒ |f(x) − f(y)| < ε. Set δ = min

{
δ1
2 , δ2

}
, to arrive at a contradiction, we

show α + δ
2 ∈ U . Fix x, y ∈

[
a, α + δ

2

]
, and suppose |x − y| < δ. If x, y ∈

[
a, α − δ1

2

]
, then x, y ∈ [a, c],

and so as c ∈ U, |x − y| < δ ≤ δ2 ⇒ |f(x) − f(y)| < ε. Conversely, without loss of generality if
x ∈

(
α − δ1

2 , α + δ
2

]
, then |x − α| < δ1

2 , and as |x − y| < δ, it follows by the triangle inequality that
|y − α| ≤ |x − y| + |x − α| < δ + δ1

2 ≤ δ1
2 + δ1

2 = δ1, and so

|f(x) − f(y)| ≤ |f(x) − f(α)| + |f(y) − f(α)| <
ε

2 + ε

2 = ε

Thus, α + δ
2 ∈ U , contradicting that α = sup(U), and so α = b. Lastly, we show b = α ∈ U .

By the left continuity of f at b, there is δ1 > 0 such that x ∈ (b − δ1, b] ⇒ |f(x) − f(y)| < ε
2 .

As b = sup(U), there is c ∈ U such that c ∈ (b − δ1, b], and so there is δ2 > 0 such that for all
x, y ∈ [a, c], |x − y| < δ2 ⇒ |f(x) − f(y)| < ε. Set δ = min

{
δ1
2 , δ2

}
and suppose x, y ∈ [a, b]

such that |x − y| < δ. If x, y ∈
[
a, b − δ1

2

]
⊆ [a, c], then |x − y| < δ ≤ δ2 ⇒ |f(x) − f(y)| < ε.

If, without loss of generality, x ∈
(
b − δ1

2 , b
]
, then |x − b| < δ1

2 , and by the triangle inequality,
|y − b| ≤ |x − y| + |x − b| < δ1

2 + δ ≤ 2 δ1
2 = δ1, and so it follows that

|f(x) − f(y)| ≤ |f(x) − f(b)| + |f(y) − f(b)| <
ε

2 + ε

2 = ε

Thus, b ∈ U and hence f is uniformly continuous.

It’s worth noting what goes wrong when we remove the conditions that the domain is both closed and
bounded, as seen in the following examples.

Example 2.4.11: Counter Example I

Show that the function f : (0, 1) → R, f(x) = 1
x is continuous but not uniformly continuous.

Proof. Fix c ∈ (0, 1), it follows from the limit laws that f is continuous at c, and so f is continuous
on (0, 1). We claim f is not uniformly continuous. Indeed, let ε0 = 1

2 and δ > 0 be given. Choose
some x0 ∈ (0, 1) such that 0 < x0 < min{1, δ} and set y0 = x0

2 . Note that |x0 − y0| = x0
2 < δ and

|f(x0) − f(y0)| =
∣∣∣∣ 1
x0

− 1
y0

∣∣∣∣ = |x0 − y0|
x0y0

= x0
2

( 1
x0y0

)
= 1

2y0
≥ 1

2 = ε0

Example 2.4.12: Counter Example II

Show that f : (0, ∞) → R, f(x) = x2 is continuous but not uniformly continuous.
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2 Limits and Continuity 2.5 The Intermediate Value Theorem and Friends

Proof. Let c ∈ [0, ∞), it follows from the limit laws that f is continuous at c at hence continuous on
[0, ∞), we show f is not uniformly continuous. Pick ε0 = 1 and let δ > 0 be given. Set x0 = 1

δ and
y0 = x0 + δ

2 . Then |x0 − y0| = δ
2 < δ, and

|f(x0) − f(y0)| = x0δ + δ2

4 > x0δ = 1 = ε0

Thus, f is not uniformly continuous.

This result and Example 2.4.11 Show that the assumption of Theorem 2.4.12 above fails if we no
longer assume that the function is continuous on a closed and bounded interval.

2.5 The Intermediate Value Theorem and Friends

2.6 Big and Little O Notation

(c) Nigel Petersen 16



3 Integration

3 Integration

3.1 The Darboux Integral

Definition 3.1.1: Partitions
Let [a, b] be an interval. An ordered collection of points P = {x0, . . . , xn} is called a partition of
[a, b] if each xi ∈ [a, b] and x0 = a, xn = b. Given an index i ∈ {1, . . . , n} we say that [xi−1, xi]
is the ith subinterval of P and define ∆xi = xi − xi−1 to be its length. We define the norm of a
partition P = {x0, . . . , xn}, denoted ∥P∥, to be the length of its longest subinterval, namely

∥P∥ = max
1≤i≤n

∆xi

We denote the collection of partitions of [a, b] as P[a,b]. Given P, Q ∈ P[a,b], we say Q is a
refinement of P , or Q refines P , if P ⊆ Q. Finally, we say that P ∪ Q is the common refinement
of P and Q.

Definition 3.1.2: Upper and Lower Darboux Sums

Given a bounded function f : [a, b] → R and a partition P = {xi}n
i=1 ∈ P[a,b], we define the

upper and lower Darboux sums of f on P , denoted U(f, P ) and L(f, P ) respectively, by

U(f, P ) =
n∑

i=1

[
sup

x∈[xi−1,xi]
f(x)

]
∆xi and L(f, P ) =

n∑
i=1

[
inf

x∈[xi−1,xi]
f(x)

]
∆xi

Additionally, we define the upper and lower Darboux integrals of f by

U(f) = inf
P ∈P[a,b]

U(f, P ) and L(f) = sup
P ∈P[a,b]

L(f, P )

Lemma 3.1.3: Properties of Partitions

Let P and Q be partitions of an interval [a, b]. The following hold

1. L(f, P ) ≤ U(f, P ).

2. If P is a refinement of Q, namely P ⊆ Q, then

L(f, P ) ≤ L(f, Q) ≤ U(f, Q) ≤ U(f, P )

3. L(f, P ) ≤ U(f, Q).

Proof. Let’s write P = {x0, . . . , xn} where x0 = a and xn = b.

1. This follows immediately as infx∈[xi−1,xi] f(x) ≤ supx∈[xi−1,xi] f(x) for any subinterval.

2. It suffices to prove this in the case where Q refines P by a single point, namely Q = P ∪ {c}
where c /∈ P . As c /∈ P , there is an index j ∈ {1, . . . , n} for which c ∈ [xj−1, xj ]. Note that as

(c) Nigel Petersen 17



3 Integration 3.1 The Darboux Integral

[xj−1, c], [c, xj ] ⊆ [xj−1, xj ], we have by properties of supremums and infimums that

sup
x∈[xj−1,xj ]

f(x)∆xj = sup
x∈[xj−1,xj ]

f(x)(xj − c) + sup
x∈[xj−1,xj ]

f(x)(c − xj−1)

≥ sup
x∈[xj−1,c]

f(x)(xj − c) + sup
x∈[c,xj ]

f(x)(c − xj−1)

inf
x∈[xj−1,xj ]

f(x)∆xj = inf
x∈[xj−1,xj ]

f(x)(xj − c) + inf
x∈[xj−1,xj ]

f(x)(c − xj−1)

≤ inf
x∈[xj−1,c]

f(x)(xj − c) + inf
x∈[c,xj ]

f(x)(c − xj−1)

The result follows as P and Q are identical on all other subintervals [xi−1, xi] for i ̸= j.

3. By considering the common refinement P ∪Q of P and Q, we can apply 2 and the result follows.

Definition 3.1.4: Darboux Integrability

A bounded function f : [a, b] → R is called Darboux integrable if L(f) = U(f), and the Darboux
integral of f is defined to be their common value.

This definition should hopefully seem natural, in general, we have that U(f, P ) is an over approxima-
tion of the integral and L(f, P ) and under approximation. We would want the integral to be the value
that our over and under approximations “converge” to. Note that this same thought motivates why
statement 2 in Lemma 3.1.3 is true, when we add more points to our partition, our over and under
approximations become more accurate.

Example 3.1.5: Constant Functions

If f : [a, b] → R is constant, then f is integrable.

Proof.

Lemma 3.1.6: Integrability Criterion

A function f : [a, b] → R is Darboux integrable if and only if for every ε > 0, there is a partition
P ∈ P[a,b] such that U(f, P ) − L(f, P ) < ε. Moreover, the Darboux integral I is the unique
value such that L(f, P ) ≤ I ≤ U(f, P ) for all P ∈ P[a,b].

This should also feel relatively natural. Given a partition P , the quantity U(f, P )−L(f, P ) represents
the “error” of our approximations using the partition P . Thus, if we can always choose a partition to
make our error arbitrarily small, it follows that our over and under approximations converge.

Example 3.1.7
Piece-wise function

Now that we’ve seen some examples of integrable functions, we can see an example of a function that is
not integrable. As per Lemma 3.1.6, to show that a bounded function f : [a, b] → R is not integrable,
we show that there is ε0 > 0 such that U(f, P ) − L(f, P ) ≥ ε0 for all partitions P of [a, b]

Example 3.1.8: A Non-Integrable Function
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3 Integration 3.2 Properties of The Darboux Integral

3.2 Properties of The Darboux Integral

Definition 3.2.1: Oscillation of a Function
Let f : [a, b] → R be a bounded function and [c, d] ⊆ [a, b]. We define the oscillation of f on
[c, d], denoted ω(f, [c, d]), by

ω(f, [c, d]) = sup
x,y∈[c,d]

|f(x) − f(y)|

Lemma 3.2.2: Properties of Oscillation

Let f : [a, b] → R be a bounded function. Then for any subinterval [c, d] ⊆ [a, b] we have

1. ω(f, [c, d]) = supx∈[c,d] f(x) − infx∈[c,d] f(x).

2. ω(|f |, [c, d]) ≤ ω(f, [c, d]).

3. For any partition P = {x0, . . . , xn} of [a, b], we can write

U(f, P ) − L(f, P ) =
n∑

i=1
ω(f, [xi−1, xi])∆xi

Proof.

Theorem 3.2.3: Linearity

Let f, g : [a, b] → R be integrable functions, then for any α ∈ R, the function αf + g : [a, b] → R
is integrable and moreover ∫ b

a
(αf + g) = α

∫ b

a
f +

∫ b

a
g

Proof. This is one of the situations were it is more convenient to use the Riemman integral rather
than the Darboux integral. As they are equivalent, we are free to use whichever we like. In this case,
the result follows almost identically to the proofs of the linearity limit laws when we use the Riemann
integral.

Theorem 3.2.4: Additivity of Domain

If f : [a, b] → R is integrable on [a, c] and on [c, b] for some c ∈ (a, b), then f is integrable and∫ b

a
f =

∫ c

a
f +

∫ b

c
f

Proof. We first show that f is integrable. Let ε > 0, as f1 := f |[a,c] and f2 := f[c,b] are integrable,
there are partitions P1 of [a, c] and P2 of [c, b] such that

U(f1, P1) − L(f1, P1) <
ε

2 and U(f2, P2) − L(f2, P2) <
ε

2

(c) Nigel Petersen 19



3 Integration 3.2 Properties of The Darboux Integral

Define P = P1 ∪ P2 which is a partition of [a, b] by construction. It then follows that

U(f, P ) − L(f, P ) = (U(f1, P1) + U(f2, P2)) − (L(f1, P1) + L(f2, P2))
= (U(f1, P1) − L(f1, P1)) + (U(f2, P2) − L(f2, P2))

<
ε

2 + ε

2
= ε

Thus, f is integrable. Now let’s prove the integral equality. We aim to use uniqueness as stated in
Lemma 3.1.6. Let P be a partition of [a, b], and set P̃ = P ∪ {c} so that we may write P̃ = P1 ∪ P2
where P1 and P2 are partitions of [a, c] and [c, b] respectively. By Lemma 3.1.6 we know that

L(f1, P1) ≤
∫ c

a
f ≤ U(f1, P1) and L(f2, P2) ≤

∫ b

c
f ≤ U(f2, P2)

By adding these two inequalities together, and applying Lemma 3.1.3, we have

L(f1, P1) + L(f2, P2) ≤
∫ c

a
f +

∫ b

c
f ≤ U(f1, P1) + U(f2, P2)

L(f, P̃ ) ≤
∫ c

a
f +

∫ b

c
f ≤ U(f, P̃ )

Finally, as L(f, P ) ≤ L(f, P̃ ) ≤ U(f, P̃ ) ≤ U(f, P ), the result follows by Lemma 3.1.6.

Proposition 3.2.5: Inheritance

If f : [a, b] → R is an integrable function, then the restriction of f to any subinterval [c, d] ⊆ [a, b]
is integrable.

Proof. Let [c, d] ⊆ [a, b] and ε > 0. As f is integrable, there is a partition P = {x0, . . . , xn} of [a, b]
such that U(f, P ) − L(f, P ) < ε. Let Q = (P ∩ [c, d]) ∪ {c, d}, namely the points in P contained in
[c, d] together with the endpoints of the subinterval. By construction, Q is a partition of [c, d] and

U(f[c,d], Q) − L(f[c,d], Q) ≤ U(f, P ∪ {c, d}) − L(f, P ∪ {c, d})
≤ U(f, P ) − L(f, P )
< ε

Theorem 3.2.6: Monotonicity

If f, g : [a, b] → R are integrable functions such that f(x) ≤ g(x) for all x ∈ [a, b], then∫ b

a
f ≤

∫ b

a
g

Proof. Define h := g − f , by construction, h(x) ≥ 0 for all x ∈ [a, b] and by linearity h is integrable.
Let P = {x0, . . . , xn} be a partition of [a, b]. On each subinterval [xi−1, xi] ⊆ [a, b], we have

inf
x∈[xi−1,xi]

f(x) ≥ inf
x∈[a,b]

f(x) ≥ 0 =⇒ 0 ≤
n∑

i=1
inf

x∈[xi−1,xi]
f(x) = L(f, P )

Thus, as L(f, P ) ≥ 0 for all partitions P , it follows by using linearity once again that

0 ≤ sup
P

L(f, P ) =
∫ b

a
g =

∫ b

a
g −

∫ b

a
f =⇒

∫ b

a
f ≤

∫ b

a
g
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3 Integration 3.3 Sufficient Conditions for Integrability

Theorem 3.2.7: Subnormality

If f : [a, b] → R is integrable, then |f | : [a, b] → R is integrable and∣∣∣∣∣
∫ b

a
f

∣∣∣∣∣ ≤
∫ b

a
|f |

Proof. To prove that |f | is integrable, we can make use of Lemma 3.2.2. Let ε > 0, by the integrability
of f there is a partition P of [a, b] for which

U(f, P ) − L(f, P ) < ε

We claim that the same partition works for |P . Indeed, write P = {x0, . . . , xn}, by Lemma 3.2.2

U(|f |, P ) − L(|f |, P ) =
n∑

i=1
ω(|f |, [xi−1, xi])∆xi ≤

n∑
i=1

ω(f, [xi−1, xi])∆xi

= U(f, P ) − L(f, P )
< ε

Thus, |f |. To prove the integral inequality, note that −|f(x)| ≤ f(x) ≤ |f(x)| for all x ∈ [a, b]. By
using monotonicity and linearity, it follows that

−
∫ b

a
|f | ≤

∫ b

a
f ≤

∫ b

a
|f | =⇒

∣∣∣∣∣
∫ b

a
f

∣∣∣∣∣ ≤
∫ b

a
|f |

3.3 Sufficient Conditions for Integrability

In this section we will present several sufficient conditions for the Darboux integrability of a bounded
function. It’s worth noting that there does exist a necessary and sufficient condition for integrability,
though we do not have the tools to state or prove it.

Proposition 3.3.1: Monotonicity

If f : [a, b] → R is monotone, then f is integrable.

Proof. We can start by first assuming f is monotonically increasing and making a useful observation
and . Given a partition P = {x0, . . . , xn} of [a, b], on each subinterval [xi−1, xi], as f is increasing, we
have

sup
x∈[xi−1,xi]

f(x) = f(xi) and inf
x∈[xi−1,xi]

f(x) = f(xi−1)

If we were to sum over the differnces between the supremum and infimum on each subinterval, all but
f(b) and −f(a) would cancel out. Thet trick from here is to choose a partition whose length is about
some quantity involving ε and f(b) − f(a). Indeed, given ε > 0, pick a partition P of [a, b] for which

∥P∥ <
ε

f(b) − f(a)
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3 Integration 3.3 Sufficient Conditions for Integrability

Note that if f(b) = f(a), we have that f is constant and hence integrable, so we may assume that
f(b) > f(a). Write P = {x0, . . . , xn}, then from our observation above, it follows that

U(f, P ) − L(f, P ) =
n∑

i=1

(
sup

x∈[xi−1,xi]
f(x) − inf

x∈[xi−1,xi]
f(x)

)
∆xi

≤ ∥P∥
n∑

i=1
(f(xi) − f(xi−1)

= ∥P∥(f(b) − f(a))

< (f(b) − f(a)) ε

f(b) − f(a)
= ε

Finally, if f is monotonically decreasing, we can apply the above to g := −f and use linearity.

Theorem 3.3.2: Continuity

If f : [a, b] → R is continuous, then f is integrable.

Proof. Let ε > 0, recall that a continuous function on a compact set is necessarily uniformly continuous,
and so there is δ > 0 such that for all x, y ∈ [a, b]

|x − y| < δ =⇒ |f(x) − f(y)| <
ε

b − a

Let P be a partition of [a, b] such that ∥P∥ < δ and write P = {x0, . . . , xn]. As f is continuous and
each [xi−1, xi] is compact, by the Extreme Value Theorem, there is ti, si ∈ [xi−1, xi] such that

sup
x∈[xi−1,xi]

f(x) = f(ti) and inf
x∈[xi−1,xi]

f(x) = f(si)

Moreover, as si, ti ∈ [xi−1, xi], we have |si − ti| ≤ ∆xi < δ and thus

U(f, P ) − L(f, P ) =
n∑

i=1
(f(ti) − f(si))∆xi <

ε

b − a

n∑
i=1

∆xi

= ε

b − a
(b − a)

= ε

Proposition 3.3.3: Extension

If f, g : [a, b] → R are bounded functions such that f is integrable on [t, b] for all t ∈ (a, b) and
g is integrable on [a, s] for all s ∈ (a, b), then f and g are integrable and moreover∫ b

a
f = lim

t→a+

∫ b

t
f and

∫ b

a
g = lim

s→b−

∫ s

a
g

Proof. Let ε > 0, if ω := ω(f, [a, b]) = 0, then f is a constant function and the result follows immedi-
ately. Assuming ω ̸= 0, define

δ = min
{

ε

2ω
,
b − a

2

}
> 0
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3 Integration 3.3 Sufficient Conditions for Integrability

Set x1 = a + δ. Note that x1 ∈ (a, b) by construction, and so by assumption, f is integrable on [x1, b].
It follows that there is a partition Q of [x1, b] such that

U(f, Q) − L(f, Q) <
ε

2

Refine Q by {a} so that P := Q ∪ {a} is a partition of [a, b]. By construction, it follows that

U(f, P ) − L(f, P ) = ω(f, [a, x1])(x1 − a) + U(f, Q) − L(f, Q)

< ωδ + ε

2
≤ ω

(
ε

2ω

)
+ ε

2
= ε

We now show that the integral of f can be obtained by taking limits. Let ε > 0, as f is bounded,
there is M > 0 such that |f(x)| ≤ M for all x ∈ [a, b]. Define δ = ε

M > 0, given t ∈ (a, a + δ), by
additivity of domain, subnormality and monotonicity, it follows that∣∣∣∣∣

∫ b

a
f −

∫ b

t
f

∣∣∣∣∣ =
∣∣∣∣∫ t

a
f

∣∣∣∣ ≤
∫ t

a
|f | ≤ M(t − a) < M

(
ε

M

)
= ε

Here we have taken for granted the straight forward result that
∫ b

a 1 = b − a for any a < b ∈ R. An
almost identical proof will establish the result for g.

Corollary 3.3.4: Discontinuous Functions

If f : [a, b] → R has finitely many points of discontinuity, then f is integrable.

Proof. We can combine the results of the previous two theorems. Enumerate the discontinuities of f
as {d1, . . . , dn} and write a = d0, b = dn+1. Then we can partition [a, b] into subintervals of the form
[di−1, di]. For such a subinterval, let mi = 1

2(di + di−1) denote the midpoint. For any t ∈ (di−1, mi),
we have that f is continuous on [t, mi] and hence integrable, thus buy Proposition 3.3.3 it follows that
f is integrable on [di−1, mi]. Similarly, for any s ∈ (mi, di), we have that f is continuous on [mi, s]
and hence integrable, and thus f is integrable on [mi, di] again by Proposition 3.3.3. Finally, as f is
integrable on [di−1, mi] and [mi, di], it follows by additivity of domain that f is integrable on [di−1, di]
for each i, and thus by additivity of domain once again it follows that f is integrable on [a, b].

Proposition 3.3.5: Composition I

If g : [a, b] → R is an integrable function and f : [c, d] → R is a continuous function such that
g([a, b]) ⊆ [c, d], then f ◦ g : [a, b] → R is integrable.

Proof. Let ε > 0, if ω := ω(f ◦ g, [a, b]) = 0, then f ◦ g is necessarily constant and hence integrable. If
not, as f : [c, d] → R is continuous and hence uniformly continuous, there is δ > 0 such that

|x − y| < δ =⇒ |f(x) − f(y)| <
ε

2(b − a)
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moreover as g is integrable there is a partition P of [c, d] for which U(g, P )−L(g, P ) < εδ
2ω . Enumerate

P = {x0, . . . , xn} and set Ik = [xk−1, xk] for k = 1, . . . , n. We can then write

U(f ◦ g, P ) − L(f ◦ g) =
n∑

k=1
ω(f ◦ g)|Ik| =

∑
ω(g,Ik)<δ

ω(f ◦ g)|Ik| +
∑

ω(g,Ik)≥δ

ω(f ◦ g)|Ik|

Suppose k ∈ {1, . . . , n} such that ω(g, Ik) < δ, then by the uniform continuity of f we have

|g(x) − g(y)| < δ =⇒ |(f ◦ g)(x) − (f ◦ g)(y)| <
ε

2(b − a) =: ε∗

for all x, y ∈ Ik, and so ω(f ◦ g, Ik) ≤ ε∗. Now we have to bound the contributions of the “bad”
intervals, namely the ones where the oscillation may exceed δ. Note that

δ(b − a) ≥
∑

ω(g,Ik)≥δ

|Ik|

Proposition 3.3.6: Composition II

Let f : [a, b] → R be an integrable function and g : [c, d] → [a, b] a differentiable function such
that g′(x) ≥ ξ > 0 for all x ∈ [c, d]. Then f ◦ g : [c, d] → R is integrable.

Proof. Let ε > 0, as f is integrable on [g(c), g(d)] = g([c, d]) ⊆ [a, b] by Proposition 3.2.5, there is a
partition Q = {y0, . . . , yn} of [g(c), g(d)] such that U(f, Q)−L(f, Q) < ξε. As g is monotone increasing
and a surjection on its image [g(c), g(d)], for each yi ∈ Q, there is xi ∈ [c, d] such that yi = g(xi),
where x0 = c and xn = d. Thus, P = {x0, . . . , xn} is a partition of [c, d] and moreover as g is strictly
increasing, for each subinterval [xi−1, xi], we can write

sup
x∈[xi−1,xi]

(f ◦ g)(x) = sup
x∈[g(xi−1,g(xi)]

f(x) and inf
x∈[xi−1,xi]

(f ◦ g)(x) = inf
x∈[g(xi−1,g(xi)]

f(x)

Using this, we can write the difference in the upper and lower sums as

U(f ◦ g, P ) − L(f ◦ g, P ) =
n∑

i=1
Vf◦g([xi−1, xi])∆xi =

n∑
i=1

Vf ([g(xi−1), g(xi)])∆xi

=
n∑

i=1
Vf ([yi−1, yi)])∆yi · ∆xi

∆yi

Where ∆yi ̸= 0 as g is strictly increasing. By applying the mean value theorem to g on a subinterval
[xi−1, xi], there is θi ∈ (xi−1, xi) such that

g(xi) − g(xi−1)
xi − xi−1

= g′(θi) =⇒ ∆xi

∆yi
= 1

g′(θi)
≤ 1

ξ

Finally, putting everything together, we can conclude

U(f ◦ g, P ) − L(f ◦ g, P ) =
n∑

i=1
Vf ([yi−1, yi)])∆yi · ∆xi

∆yi
≤ 1

ξ

n∑
i=1

Vf ([yi−1, yi)])∆yi

= 1
ξ

(U(f, Q) − L(f, Q))

< ε
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3.4 The Fundamental Theorem of Calculus

Theorem 3.4.1: The First Fundamental Form
If f : [a, b] → R is integrable, then the function F : [a, b] → R defined by

F (x) =
∫ x

a
f(t)dt

is uniformly continuous, and moreover if f is continuous at a point c ∈ (a, b), then F is differ-
entiable at c and F ′(c) = f(c).

Proof.

Theorem 3.4.2: The Second Fundamental Form
If f [a, b] → R is integrable and F : [a, b] → R is a continuous antiderivative of f which is
differentiable at all but finitely many points in [a, b], then∫ b

a
f = F (b) − F (a)

Proof. Enumerate the discontinuities of F as D = {d0, . . . , dn}, and fix a partition P = {y0, . . . , ym}
of [a, b]. Refine P by D, namely set P̃ = P ∪ D and write P̃ = {x0, . . . , xN }. By construction, on each
subinterval [xi−1, xi], F is continuous and differentiable on (xi−1, xi). By the Mean Value Theorem,
it follows that there is θi ∈ (xi−1, xi) such that

F (xi−1 − F (xi) = F ′(θi)(xi − xi−1) = f(θi)(xi − xi−1)

As θi ∈ [xi−1, xi], we have infx∈[xi−1,xi] f(x) ≤ f(θi) ≤ supx∈[xi−1,xi] f(x), and so

L(f, P̃ ) ≤
N∑

i=1
f(θi)(xi − xi−1) ≤ U(f, P̃ )

L(f, P ) ≤ L(f, P̃ ) ≤
N∑

i=1
(F (xi) − F (xi−1))︸ ︷︷ ︸

F (b)−F (a)

≤ U(f, P̃ ) ≤ U(f, P )

Thus, by uniqueness, the result follows.

Example 3.4.3
Examples

(c) Nigel Petersen 25



4 Metric Space Topology

4 Metric Space Topology

4.1 Open and Closed Sets

4.2 Sequences and Continuity

4.3 The Subspace Topology

4.4 Compactness

4.5 Connectedness

Definition 4.5.1: Disconnections and Connected Sets
We say that a set S ⊆ R is disconnected if there exists disjoint open sets U, V ⊆ R such that
S ⊆ U ∪ V and U ∩ S, V ∩ S ̸= ∅, such a pair (U, V ) is called a disconnection. We say that a
set is connected if it is not disconnected

Though this will be our standard definition (those who are more familiar with topology already may
have noticed that we explicitly avoided mentioning a notion of the “subspace topology” in our definition
of a disconnection), we can rephrase it using a simple property of sets. Recall that

(S ∩ U) ∪ (S ∩ V ) = S ∩ (U ∪ V )

and so S ⊆ U ∪ V if and only if S = S ∩ (U ∪ V ), namely S ⊆ R is disconnected if and only if there
exists disjoint open sets U, V ⊆ R such that S ∩ U, S ∩ V ̸= ∅ and (S ∩ U) ∪ (S ∩ V ) = S.

Definition 4.5.2: Formal Intervals
A set I ⊆ R is called an interval if for every a, b ∈ I and every x ∈ R, if a < x < b then x ∈ I.

Though it may seem a bit strange and unnecessary at first, with a bit of thought hopefully this
definition should make sense. We say that a set I an interval if for any two distinct points x, y ∈ I, all
real numbers between x and y are also in I. Let’s see a simple example that will lay some groundwork
for the next result. Consider the set A = [1, 2] ∪ [4, 5]. This is a set that we know is not an interval,
and if we were to draw it on a number line, it would make sense that it shouldn’t be considered a
connected set (it’s the union of two separated pieces). Let’s verify that A is not connected by explicitly
constructing a disconnection. Note that 2, 4 ∈ A, yet 3 /∈ A, showing that A is in fact not an interval.
Additionally, by considering the open sets U = (−∞, 3) and V = (3, ∞), it follows that (U, V ) forms
a disconnection of A. The exact details are generalized to form the following Proposition.

Proposition 4.5.3
If I ⊆ R is not an interval, then I is disconnected.

Proof. As I is not an interval, negating Definition 4.5.2 says there is a < b ∈ I and x ∈ R such that
a < x < b and x /∈ I. Define U = (−∞, x), V = (x, ∞). Then clearly U and V are open an disjoint,
moreover a ∈ U ∩ I, b ∈ V ∩ I and as x /∈ I we have I ⊆ R \ {x} = U ∪ V . Thus (U, V ) form a
disconnection and hence I is disconnected.

(c) Nigel Petersen 26



4 Metric Space Topology 4.5 Connectedness

Proposition 4.5.4
If I ⊆ R is disconnected, then I is not an interval.

Proof. Suppose I ⊆ R admits a disconnection (U, V ). Pick x ∈ U ∩ I, y ∈ V ∩ I, as U ∩ V = ∅ we
have x ̸= y and so assume without loss of generality x < y. Define

A = {a ≥ x : [x, a] ∩ I ⊆ U ∩ I}

Note that x ∈ A and as y /∈ I ∩U we have y is an upper bound for A, thus by completeness c = sup(A)
exists. We show c /∈ I. Suppose c ∈ U ∩ I, then as c ∈ U and U is open, there is r > 0 such that
(c − r, c + r) ⊆ U and hence (c − r, c + r) ∩ I ⊆ U ∩ I. As c − r is not an upper bound, there is a0 ∈ A
such that c − r

2 < a0, and hence as [x, a0] ∩ I ⊆ U ∩ I we have[
x, c + r

2

]
∩ I =

([
x, c − r

2

]
∩ I

)
∪
([

c − r

2 , c + r

2

]
∩ I

)
⊆ U ∩ I

Namely, c + r
2 ∈ A, contradicting that c = sup(A) is an upper bound, and so c /∈ U ∩ I. Conversely,

suppose c ∈ V ∩ I. Again, as c ∈ V and V is open, there is r > 0 such that (c − r, c + r) ∩ I ⊆ V ∩ I.
Finally, as

(
c − r, c − r

2
]

∩ I ⊆ (c − r, c + r) ∩ I ⊆ V ∩ I, we have[
x, c − r

2

]
∩ I ∩ (V ∩ I) ̸= ∅ =⇒

[
x, c − r

2

]
∩ I ̸⊆ U ∩ I

Namely c − r
2 /∈ A and it follows that c − r

2 is an upper bound for A, contradicting that c = sup(A) is
the least upper bound. Thus, c /∈ V ∩ I and hence c /∈ I as I = (U ∩ I) ∪ (V ∩ I). Thus, as x ∈ A
and y is an upper bound for A we have x ≤ c ≤ y and moreover as x ∈ U ∩ I, y ∈ V ∩ I, we have
x < c < y. Thus, I is not an interval.

By combining the previous two propositions, we have that I ⊆ R is disconnected if and only if I is not
an interval, where the contrapositive says that a set is connected in R if and only if it is an interval.

Proposition 4.5.5

Let S ⊆ R and f : S → R a continuous function. If f(S) is disconnected then S is disconnected.

Proof. Let (U, V ) be a disconnection of f(S). By the continuity of f , as U, V ⊆ R are open we have
that f−1(U), f−1(V ) are open. We claim (f−1(U), f−1(V )) forms a disconnection of S. Indeed, note
that f−1(U) ∩ f−1(V ) = f−1(U ∩ V ) = ∅ as U ∩ V = ∅, moreover

f−1(U) ∪ f−1(V ) = f−1(U ∪ V ) ⊇ f−1(f(S)) ⊇ S

as f(S) ⊆ U ∪ V . Finally, Let y ∈ f(S) ∩ U , then writing y = f(x) for x ∈ S we have x ∈ S ∩ f−1(U)
and so f−1(U) ∩ S ̸= ∅ and similarly f−1(V ) ∩ S ̸= ∅. Thus, (f−1(U), f−1(V )) forms a disconnection
of S and hence S is disconnected.

Corollary 4.5.6: Intermediate Value Theorem

If f : [a, b] → R is a continuous function such that f(a)f(b) < 0, then there is c ∈ (a, b) such
that f(c) = 0.

Proof. As [a, b] ⊆ R is connected and f is continuous, by Proposition 4.5.5 f([a, b]) is connected.
Assume without loss of generality f(a) < 0 < f(b). Then as f([a, b]) is an interval we have 0 ∈ f([a, b])
by Definition 4.5.2 and the result follows.
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