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1 Probability and Statistics I

1 Probability and Statistics I

1.1 Probability and Solving Problems with R

Many of the problems that we’ll encounter in our study of probability lend themselves well to sim-
ulation. Namely, the context of the problem is one that we can easily model by using R, and we
can run a large number of trials to compute the approximate probability of success. This idea works
when we think about the probability of an event as a long term average of the successful outcomes of
“infinitely-many” trials. For now, we can start with something simple

Example 1. Calculate the probability of a flipping a fair coin 5 times and seeing exactly 4 heads.

A single trial of this experiment consists of flipping a fair coin 5 times, we will then record the number
of heads we observe and in our code, we can check to see if the number of observed heads is exactly
4. If so, we will consider this particular trial a success. In our program, we can be a bit more general,
using parameters for the probability of obtain heads upon flipping a coin, the number of flips in each
trial and the number of heads we’re looking for in each trial. For now, let’s use a default of 10, 000
trials of our experiment.

CoinFlippingSimulation <- function(p, num_flips, num_heads, num_trials){
run = 1
prop= 0
while(run <= num_trials){

coin_flips = sample(c("H", "T"), size = num_flips, replace = T, prob = c(p, 1-p))
if(length(which(coin_flips == "H")) == num_heads){

prop = prop+ 1
}
run = run + 1

}
return(prop/num_trials)

}

> CoinFlippingSimulation(p = 0.5, num_flips = 5, num_heads = 4, num_trials = 10000)
[1] 0.1563

Of course, we can compute the exact value of this probability fairly easily. Suppose that p is the
probability of flipping our coin and obtaining heads, n is the number of coin flips in a trial and h is the
number of observed heads necessary for a successful trial. Let X denote the number of heads observed
after flipping our coin n many times. Then

P(X = h) =
(

n

h

)
ph(1 − p)n−h

Namely X ∼ Binomial(n, p) and so in our original case where p = 1
2 , n = 5, h = 4, the probability of

observing exactly 4 heads among 5 tosses of a fair coin is exactly(
5
4

)
1
25 = 0.15625

Let’s have a look at a slightly less trivial experiment, one that requires us to use a little bit more of
our probability knowledge.
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1 Probability and Statistics I 1.1 Probability and Solving Problems with R

Example 1.1.1
Suppose we have a jar with 4 red balls and 6 black balls. 3 balls are removed from the jar at
random, and their colours are unknown. What is the probability that the next ball drawn is
red?

Solution. We can take cases on the colours of the 3 balls that we removed initially, and use the total
law of probability. Let Ai denote the event that exactly i of the 3 balls removed initially are red, and
let B denote the event of the next ball being red. Then

P(B) =
3∑

i=0
P(B|Ai)P(Ai)

If i red balls removed initially, then there are 4 − i red balls left in the jar, and so P(B|Ai) = 4−i
7 .

The number of ways to remove i red balls and 3 − i black balls from the jar is simply
(4

i

)( 6
3−i

)
, and as

there are
(10

3
)

total ways to remove 3 balls from the jar, we have

P(B) =
3∑

i=0
P(B|Ai)P(Ai) =

3∑
i=0

[4 − i

7

] (4
i

)( 6
3−i

)(10
3
) = 0.4

To test that our answer is correct, we can conduct this experiment several times, and determine the
proportion of trials where the last ball drawn is Red. We should expect that our estimated proportion
will be close to the true proportion we found above.

JarSamplingSimulation <- function(red, black, initial_draws, trials){
prop = 0
trial = 1
while(trial <= trials){

jar = sample(c(rep("R", red), rep("B", black)))
remaining_jar = sample(jar, size = length(jar) - initial_draws)
draw = sample(remaining_jar, size = 1)
if(draw == "R"){

prop = prop + 1
}
trial = trial + 1

}
return(prop/trials)

}

> JarSamplingSimulation(red = 4,black = 6, initial_draws = 3, num_trials = 10000)
[1] 0.3933

And so with 10, 000 trials of the experiment, we see that our success ratio is approximately our exact
probability. Those interested may wish to run the above code with a differing number of trials to
see how it influences the accuracy of our estimate (of course, more trials will give us more accuracy).
We’ll be able to make the idea behind this approximation more precise at the end of the course when
we discuss sequences of random variables and the weak law of large numbers. For now, let’s work
through one final example, this one a little bit more complicated.

(c) Nigel Petersen 3



1 Probability and Statistics I 1.1 Probability and Solving Problems with R

Example 1.1.2: Plane Ticket Problem
Suppose you’ve booked a flight on a plane with 10 total seats, and each seat has exactly one
passenger who has booked it. When everyone lines up to board the plane, you are the last
person in line and the first person in line loses their ticket! If the first person boarding chooses
a seat at random, and everyone boarding after them either sits in their assigned seat if it is
available or chooses a new seat at random if it is not available, what is the probability that you
sit in your assigned seat?

Before we dive into the solution, we can phrase the problem a bit more generally so that we can build
up to our desired solution by considering smaller cases. We’ll attempt to solve the problem in the case
that there are n ∈ N seats on the plane and exactly one passenger per seat.

Solution. Certainly if there are only n = 2 seats on the plane, then with probability 1
2 the first person

boarding will not pick your seat. When n = 3, you’ll be able to sit in your seat if the first person
chooses their original seat, or the two people in front of you choose each others seats. Namely, the first
person chooses their seat correctly with probability 1

3 , and they choose the second persons seat with
probability 1

3 . From here, the person boarding before you must choose the remaining seat that is not
yours, and they do so with probability 1

2 . If we define θn as the probability you sit in your assigned
seat when there is n ∈ N seats on the plane, then

θ3 = 1
3 + 1

3 · 1
2 = 1

2

When n = 4, things become more complicated, but a pattern starts to become apparent. The first
person can sit in their assigned seat with probability 1

4 , but with probability 1
4 they sit in the seat of

the next person boarding. Notice that in this case, we are in the setting of the problem when n = 3,
and the second person in line now has to make a choice, where their “correct” choice of seat is not
their own, but the seat of the person who took theirs. So we will be successful with probability θ3.
Similarly, if the first person boarding sits in the seat assigned to the third person boarding, then the
second person will sit in their assigned seat with probability 1 and the third person is now in the
setting of the problem when n = 2, where their “correct” choice of seat is the seat corresponding to
the first person boarding, so we will be successful with probability θ2 = 1

2 . Combining these cases
together, we have

θ4 = 1
4 + 1

4θ3 + 1
4θ2 = 1

4 + 1
4 · 1

2 + 1
4 · 1

2 = 1
2

Aha! A pattern has started to emerge! If we enumerate the passengers boarding as p1, p2, . . . , pn

where you are pn, the last person boarding, then if p1 chooses the seat assigned to pk, everyone in
between them (namely p2, . . . , pk−1) will sit in their assigned seat with probability 1, and pk is now
in the setting of the original problem with n − k + 1 seats, and passengers pk, pk+1, . . . , pn. It then
follows that we would be successful in this case with probability 1

nθn−k+1. Thus, if there are n seats
on the plane, by the total law of conditional probability

θn =
n−1∑
k=1

P(pn sits in their assigned seat|p1 sits in the seat for pk)P(p1 sits in the seat for pk)

= 1
n

+ 1
n

θ2 + 1
2θ3 + · · · + 1

n
θn−2 + 1

n
θn−1

From what we calculated earlier, it seems that θn = 1
2 for all n ∈ N, where we saw this explicitly for

n = 2, 3 and 4, so let’s try to prove this using strong induction. Our base case is taken care of, so

(c) Nigel Petersen 4



1 Probability and Statistics I 1.1 Probability and Solving Problems with R

let’s assume that θk = 1
2 for k = 2, 3 . . . , n − 1, and consider the case of n total seats. By the formula

above, it follows that

θn = 1
n

+ 1
n

θ2 + 1
2θ3 + · · · + 1

n
θn−2 + 1

n
θn−1 = 1

n

(
1 + n − 2

2

)
= 1

2

We’ve figured it out! To our surprise (or at the very least, to my surprise), the probability you end
up sitting in your correctly assigned seat is 1

2 , no matter how many seats are on the plane! Let’s see
if we can verify this by using simulation. We’ll make things a bit more interesting in our simulation
study, and I encourage you to try this generalization for yourself. We’ll assume that there is a differing
number of passengers and seats on the plane (of course, with more seats than passengers). Your take
home task will be to determine a closed form solution to the problem in the case of n passengers and
m ≥ n seats on the plane. For those very interested in the problem, try to write your own simulation
code to account for a selection scheme used by passengers when they have to choose a seat at random.
For example, suppose they can either choose their assigned seat now with probability p and make
a selection of a random available seat with probability 1 − p. For now, let’s focus on verifying our
solution to the original problem.

PlaneSeatingSimulation <- function(num_passengers, num_seats, num_trials){
if(num_seats < num_passengers){

return("There are not enough seats")
}
run = 1
prop= 0
while(run <= num_trials){

passengers = c(seq(1, num_passengers))
seats = c(rep(0, num_seats))
seats[sample(c(seq(1, num_seats)), 1)] = 1
passengers = passengers[2:length(passengers)]
while(length(passengers) > 1){

if(seats[passengers[1]] == 1){
choice = sample(which(seats==0), 1)
seats[choice] = 1

}
else{

seats[passengers[1]] = 1
}
passengers = passengers[2:length(passengers)]

}
if(seats[num_passengers] == 0){

prop = prop+ 1
}
run = run + 1

}
return(prop/num_trials)

}

> PlaneSeatingSimulation(num_passengers = 10, num_seats = 10, num_trials = 10000)
[1] 0.4925
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1 Probability and Statistics I 1.2 Sequences of Random Variables and Convergence

1.2 Sequences of Random Variables and Convergence

Traditionally, this is a topic that always confuses students the most, and there’s a few reasons for this.
First and foremost, it probably shouldn’t be taught in this course, especially a last minute topic to
squeeze in before the end of the semester (though this is just a tinfoil hat theory of mine). Secondly
and more importantly, why exactly it’s useful will be completely lost on you as a student until you
learn more about estimation and inference, which usually comes in the continuation of this course.
Nevertheless, I’ll try to shed some light on how things work, why this could potentially be useful, and
we’ll get our hands dirty with some examples and counterexamples.

1.2.1 The Basics

A natural place to start is with the necessary definitions of convergence. A simple place to start would
be what exactly a sequence of random variables is. Like with any sequence, we can think of it as either
a countable collection of objects, or as a function from N to another set. For the sake of simplicity, we
will say that a sequence of random variables is a collection {Xn}n∈N of random variables indexed by
N, namely for every n ∈ N, there is an associated random variable Xn.

Definition 1.2.1: Types of Convergence

Let (Xn) be a sequence of random variables, and X another random variable. We write Fn and
F to denote the cumulative distribution functions of each Xn, and F , respectively. We say the
sequence (Xn) of random variables converges to X:

1. in probability, written Xn
p−→ X, if limn→∞ P(|Xn − X| > ε) = 0 for every ε > 0.

2. in distribution, written Xn
d−→ X, if limn→∞ Fn(x) = F (x) for every point of continuity x

of F .

3. in quadratic mean, written Xn
qm−−→ X, if limn→∞ E[(Xn − X)2] = 0.

For those more analysis inclined, you may recognize convergence in distribution as a particular type
of pointwise convergence. Namely if U ⊆ R is the collection of points for which F is continuous, then
Xn

d−→ X if and only Fn → F pointwise on U . Alternatively, we will adopt the following notational
convention for convergence to a “constant”, we write Xn → c to mean that (Xn) converges to a random
variable X for which P(X = c) = 1 (such a random variable is called degenerate)

Example 1.2.2

Suppose (Xn) is a sequence of Uniform (0, 1) random variables, and set

X(n) = max{X1, . . . , Xn} and Yn = n(1 − X(n))

Show that X(n)
p−→ 1 and Yn

d−→ Y ∼ Exponential(1)

Proof. Let’s start by showing X(n)
p−→ 1. Note that as each Xn ∼ Uniform (0, 1), we have |X(n)−1| ≤ 1,

and so if ε ≥ 1, it follows immediately that P(|X(n) − 1| > ε) = 0. Let ε ∈ (0, 1), once again as

(c) Nigel Petersen 6



1 Probability and Statistics I 1.2 Sequences of Random Variables and Convergence

X(n) > 1 + ε is not possible, we have that

P(|X(n) − 1| > ε) = P(X(n) − 1 > ε) + P(1 − X(n) > ε)
= P(X(n) < 1 − ε)
= P(X1 < 1 − ε, . . . , Xn < 1 − ε)
ind.= (1 − ε)n

Since ε ∈ (0, 1), we have |ε − 1| < 1 and so (1 − ε)n → 0. Thus, by the squeeze theorem, we
conclude that X(n)

p−→ 1. Now let’s show that Yn
d−→ Y where Y ∼ Exponential(1). We know that

FY (y) = 1 − e−y for y > 0. It suffices to find the cdf for each Yn. Let y > 0, we can write

P(Yn ≤ y) = P(n(1 − X(n)) ≤ y) = P(X(n) ≥ 1 − y
n)

= 1 − P(X(n) ≤ 1 − y
n)

= 1 − P(x1 ≤ 1 − y
n , . . . , Xn ≤ 1 − y

n)
ind= 1 − (1 − y

n)n

and so as n → ∞, using properties of e, we have Fn(y) = (1 − y
n)n → 1 − e−y = F (y). Of course, when

y ≤ 0, the result follows immediately as each Xn ∈ (0, 1). Thus, Yn
d−→ Y as needed.

Lemma 1.2.3
Let X and Y be random variables, and y ∈ ΩY , the sample space of Y . Then for any ε > 0

P(Y ≤ y) ≤ P(|X − Y | > ε) + P(X ≤ y + ε)

Proof. The idea behind the proof is to partition the event Y ≤ y by considering Y ≤ y, |X − Y | > ε
and Y ≤ y, |X − Y | ≤ ε. Indeed, let ε > 0, y ∈ ΩY , by the total law of probability

P(Y ≤ y) = P(Y ≤ y, |X − Y | > ε) + P(Y ≤ y, |X − Y | ≤ ε)
≤ P(|X − Y | > ε) + P(Y ≤ y, X − Y ≥ ε, X − Y ≤ ε)
≤ P(|X − Y | > ε) + P(Y ≤ y, X ≤ Y + ε)
≤ P(|X − Y | > ε) + P(X ≤ y + ε)

Our goal for now will be to establish a relationship between these types of convergence. There is a
special case we’ll take a look at, namely when our limiting random variable is degenerate, but the
strength of our convergence types can be summarized by the following theorem:

Theorem 1.2.4
Let (Xn) be a sequence of random variables, and X a random variable. Then the following
hold.

1. If Xn
qm−−→ X, then X

p−→ X.

2. If Xn
p−→ X, then X

d−→ X.

3. If c ∈ R and Xn
d−→ c, then Xn

p−→ c.

(c) Nigel Petersen 7



1 Probability and Statistics I 1.2 Sequences of Random Variables and Convergence

Proof. (1) This follows as a direct consequence of the squeeze theorem and the relevant definitions of
convergence. Let ε > 0, by Markov’s inequality

0 ≤ P(|Xn − X| > ε) = P((Xn − X)2 > ε2) ≤ E[(Xn − X)2]
ε2

and the result follows as Xn
qm−−→ X, and hence the right side tends to 0.

(2) Let x be a point of continuity of F = FX , the cdf of X, and ε > 0. Our goal will be to trap Fn(x)
between F (x − ε) and F (x + ε). Let n ∈ N, by first applying Lemma 1.2.3 to Xn and X we have

P(Xn ≤ x) ≤ P(X ≤ x + ε) + P(|Xn − X| > ε)

A similar application of the lemma using x − ε in place of x yields

P(X ≤ x − ε) ≤ P(Xn ≤ x) + P(|Xn − X| > ε)

Rewriting leaves us with P(Xn ≤ x) ≥ P(X ≤ x − ε) − P(|Xn − X| > ε). Finally, writing everything
in terms of Fn and F , we have

F (x − ε) − P(|Xn − X| > ε) ≤ Fn(x) ≤ F (x + ε) + P(|Xn − X| > ε)

As Xn
p−→ X, we have P(|Xn − X| > ε) = 0 as n → ∞, and so by the Squeeze Theorem

F (x − ε) ≤ lim
n→∞

Fn(x) ≤ F (x + ε)

As ε > 0 was arbitrary, it follows that Fn(x) → F (x) and hence Xn
d−→ X.

(3) Let ε > 0, and suppose X ≡ c, namely P(X = c) = 1. As the cdf of X is F (x) = I(x ≥ c) and
Xn

d−→ X, it follows that

lim
n→∞

P(|Xn − c| > ε) = lim
n→∞

P(Xn > c + ε) + lim
n→∞

P(Xn < c − ε)

= 1 − F (c + ε) + F (c − ε)
= 0

Conditions 2 and 3 together say that Xn
p−→ c if and only if Xn

d−→ c. It’s worth noting that the reverse
implication does not generally hold in the case the limit distribution is non-degenerate. In fact, the
converses of statements 1 and 2 from Theorem 1.2.4 are both not true! We can construct explicit
counterexamples to both to show that each convergence type is strictly stronger than the previous.

Example 1.2.5: Probability but not Quadratic Mean
Convergence in probability is strictly weaker than convergence in quadratic mean.

Proof. Let U ∼ Uniform (0, 1) and for n ∈ N define Xn =
√

nI(0 < U < 1
n). We claim Xn

p−→ 0 yet Xn

does not converge to 0 in quadratic mean. First let’s show Xn
p−→ 0. As the indicator function takes

on values in {0, 1} only, given ε > 0, for any n ∈ N with n > ε2 (so that ε√
n

< 1), we have

P(|Xn| > ε) = P(I(0 < U < 1
n) > ε√

n
) = P(0 < U < 1

n) = 1
n

(c) Nigel Petersen 8



1 Probability and Statistics I 1.2 Sequences of Random Variables and Convergence

Thus, P(|Xn| > ε) = 1
n → 0 and so Xn

p−→ 0. Conversely,

E(|Xn|2) = E(nI2(0 < U < 1
n)) = nE(I(0 < U < 1

n))

= n

∫ 1

0
I(0 < U < 1

n)fU (u)du

= n

∫ 1
n

0
du

= 1

and so Xn fails to converge to 0 in quadratic mean.

Example 1.2.6: Distribution but not Probability
Convergence in distribution is strictly weaker than convergence in probability.

Proof. Let X ∼ Uniform [−1, 1], given k ∈ N we set X2k−1 = X and X2k = −X. We first claim that
Xn

d−→ X. Indeed, as X ∼ Uniform[−1, 1], the cdf of X is

F (x) =


0 x < −1
x+1

2 −1 ≤ x < 0
1 x ≥ 0

We can start first with x ∈ [−1, 0). Given k ∈ N, we have P(X2k−1 ≤ x) = P(X ≤ x) = F (x) by
construction. Moreover

P(X2k ≤ x) = P(−X ≤ x) = 1 − P(X ≤ −x) = 1 − (−x + 1)
2 = x + 1

2 = F (x)

As P(X2k ≤ x) = 1 − P(X ≤ −x), it follows that

x < −1 =⇒ P(X2k ≤ x) = 0 and x > 1 =⇒ P(X2k ≤ x) = 1

Thus, P(Xn ≤ x) = P(X ≤ x) for all n ∈ N and x ∈ R, namely Xn
d−→ X. To show that Xn fails to

converge in probability to X, we can consider the even-indexed terms. Let ε = 1
2 > 0. For any k ∈ N,

by definition we have

P(|X2k − X| > 1
2) = P(|X| > 1

4) ≥ P(X > 1
4)

= 1 − F (1
4)

= 3
8

and so Xn cannot converge in probability to X.

1.2.2 A Simple Application

We’ll end things off by recalling a major result in the course and putting it to good use in a familiar
setting. It’s worth noting that the world of Computational Statistics is far more vast than I’ve
introduced here, and the problem of accurately estimating the value of a definite integral, among
other interesting and useful problems, is one that is explored in further depth in our computational

(c) Nigel Petersen 9



1 Probability and Statistics I 1.2 Sequences of Random Variables and Convergence

stats course STA312. I highly recommend! For now, let’s recall the Weak Law of Large Numbers and
use it to estimate various types of definite integrals.

Theorem 1.2.7: Weak Law of Large Numbers

If (Xn) is sequence of independent and identically distributed random variables with mean µ

and variance σ2 < ∞, then Xn
p−→ µ.

Proof. This follows as a pretty quick consequence of Markov’s inequality. Indeed, let ε > 0, Applying
Markov’s inequality to |Xn − µ|, it follows that

0 ≤ P(|Xn − µ| > ε) ≤ E(Xn − µ)2

ε2 = σ2

nε2

and the result follows by the squeeze theorem as σ2

nε2 → 0 as n → ∞.

Finally, we’ll recall the continuous mapping theorem and supply a proof for those interested. Let
U ⊆ R containing a point c ∈ R, formally speaking, a function f : U → R is continuous at c if for
every ε > 0, there is δ > 0 such that for any x ∈ U ; if |x − c| < δ, then |f(x) − f(c)| < ε.

Theorem 1.2.8: Continuous Mapping

Let (Xn) be a sequence of random variables and c ∈ R for which Xn
p−→ c. If U is an open

neighbourhood of c and g : U → R is continuous at c, then g(Xn) p−→ g(c)

Proof. We’ll assume that Xn(ΩXn) ⊆ U so that each g(Xn) is well defined. Fix n ∈ N and ε > 0, as
g is continuous at c, there is δ > 0 such that for all x ∈ U we have |x − c| < δ ⇒ |g(x) − g(c)| < ε. It
then follows that for any x ∈ Ωn, we have |Xn(x) − c| < δ ⇒ |g(Xn(x)) − g(c)| < ε, namely

{x ∈ ΩXn : |Xn(x) − c| < δ} ⊆ {x ∈ ΩXn : |g(Xn(x)) − g(c)| < ε}

Thus, by monotonicity of probability it follows that P(|Xn − c| < δ) ≤ P(|g(Xn) − g(c)| < ε). Finally,
as Xn

p−→ X, together with the squeeze theorem, we conclude

1 = lim
n→∞

P(|Xn − c| < δ) ≤ lim
n→∞

P(|g(Xn) − g(c)| < ε) ≤ 1 =⇒ g(Xn) p−→ g(c)

Let’s start with a motivating problem. Suppose we want to compute

I =
∫ 1

0
ex2 dx

If we naively try to use the Fundamental Theorem of Calculus, we’ll run into trouble right away as
there is no elementary anti-derivative for ex2 . Let’s look at this from perhaps a less obvious perspective.
Let X ∼ Uniform [0, 1], and set g(x) = ex2 . We can then write

I =
∫ 1

0
g(x)dx =

∫ 1

0
g(x) 1

1 − 0 dx =
∫
R

g(x)pX(x)dx = Eg(X)

Namely we can express our integral as an expected value. Why might this be useful? Well, accordingly
to Theorem 1.2.7, we know that a sequence of averages will converge in probability to an expected
value (population average). Namely by Theorem 1.2.8, as g is continuous, if (Xn) is a sequence of
Uniform [0, 1] random variables, then g(Xn) → I as I = Eg(X) is the population mean of {g(Xn) :

(c) Nigel Petersen 10



1 Probability and Statistics I 1.2 Sequences of Random Variables and Convergence

n ∈ N}. Our strategy will then be as follows: Generate a large iid sample (note that lower case letters
indicate observed values) x1, . . . , xN ∼ Uniform [0, 1] and then compute

Î = 1
N

N∑
i=1

g(xi) ≈ Eg(X)

As we’ve been doing, we can implement this solution in R to get an approximation for I.

g <- function(x){
return(exp(xˆ2))
}
I_hat = mean(g(runif(10000, 0, 1)))

> I_hat
[1] 1.458717

A common integral calculator gives us an approximate value of 1.462651, so we’re not extremely
accurate, but we’re decently close with this approach. We can generalize this to work for an arbitrary
continuous function f : [a, b] → R. If X ∼ Uniform [a, b] then

I =
∫ b

a
f(x)dx = (b − a)

∫ b

a
f(x) 1

b − a
dx = (b − a)

∫
R

f(x)pX(x)dx = (b − a)Ef(X)

Our approximation would involve obtaining a large iid sample x1, . . . , xN ∼ Uniform [a, b] and setting

Î = b − a

N

N∑
i=1

f(xi) ≈ (b − a)Ef(X)

The last thing we’ll look at is when our domain of integration is unbounded, which will force us away
from making use of the uniform distribution (recall that we cannot place a uniform distribution on an
unbounded set) We’ll generally have two approaches: Either we can make a substitution so that our
domain of integration is bounded so that we can use the estimation method above, or we can compare
our integral with a distribution whose support is an unbounded set.

Example 1.2.9

Approximate I =
∫ ∞

0
e−x2 dx

Solution. We’ll do this in three different ways, with the final approach leading to an extremely impor-
tant result in statistical inference. We’ll start easy for now by making use of a friendly distribution.

Solution 1. We can write e−x2 = ex−x2
e−x and make use of the exponential distribution by setting

h(x) = ex−x2 . Namely if X ∼ Exponential(1), then

I =
∫ ∞

0
ex2 dx =

∫ ∞

0
ex−x2

e−x dx =
∫
R

h(x)pX(x)dx = Eh(X)

By sampling x1, . . . , xN
iid∼ Exponential(1), we can set Î1 = 1

N

∑N
i=1 h(xi).
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Solution 2. Recall that σ : R → (0, 1) defined by σ(x) = ex

1+ex (sometimes called the sigmoid function)
is a bijection with inverse σ−1(x) = log( x

1−x). We can use symmetry to help us out first and write

I =
∫ ∞

0
e−x2 dx = 1

2

∫
R

e−x2 dx

By setting u = σ(x) and writing x = σ−1(u), we have

dx = 1
u(1 − u) du =⇒ 1

2I =
∫ 1

0
exp

{
−
(

log
(

u

1 − u

))2
}

1
u(1 − u) du = 1

2

∫ 1

0

e−(σ−1(u))2

u(1 − u) du

Going forward we can generate a sample from Uniform [0, 1] as we did before. Namely, we can generate
x1, . . . , xN ∼ Uniform [0, 1] and set

Î2 = 1
2N

N∑
i=1

g(xi) where g(x) = e−(σ−1(x))2

x(1 − x)

Solution 3. The last of our solutions makes use of the normal distribution and a fundamental result
in statistical inference. Let’s recall that if X ∼ N(0, σ2) then

P(X > 0) =
∫ ∞

0

1
σ

√
2π

e− x2
2σ2 dx

We wanna pick σ so that e−x2 is proportional to the density of X ∼ N(0, σ2), namely we want 2σ2 = 1,
and so σ = 1√

2 . Thus, if X ∼ N(0, 1
2), then

I =
∫ ∞

0
e−x2 dx =

√
π

∫ ∞

0

1√
π

e−x2 dx =
√

πP(X > 0)

From here, we’d like to be able to write P(X > 0) in terms of some sort of expected value so that we
can use our same approach with the Weak Law of Large Numbers. A clever observation we can make
is the following

P(X > 0) =
∫ ∞

0
pX(x)dx =

∫
R

pX(x)I(x > 0)dx = E(I(X > 0))

and so we can make use of the same technique as before! Namely if we generate x1, . . . , xN ∼ N(0, 1
2),

we can set

Î3 =
√

π

N

N∑
i=1

I(xi > 0)

It’s worth noting that if we have an iid sample X1, . . . , XN from a distribution Q with cumulative
distribution function F , then the empirical cumulative distribution function F̂N , defined by

F̂N (x) = 1
N

N∑
i=1

I(Xi < x)

is an important estimator used often in inference. The quality of this estimator is established by the
famed Glivenko-Cantelli Theorem which states that supx |F̂N (x) − F (x)| p−→ 0, namely that F̂N is a
uniformly consistent estimator of the cdf F . This is getting a bit too far away from the material in
our course, so let’s finish things up by using properties of density functions to compute the exact value
of I. Suppose that X ∼ N(0, 1

2), then using the same symmetry idea as in solution 2, we can write

1 =
∫
R

pX(x)dx =
∫
R

1√
π

e−x2 dx = 2√
π

∫ ∞

0
e−x2 dx =⇒ I =

√
π

2
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Lastly, we can compute each of the values of our estimators and compare their errors based on our
exact value (though we will propagate error when using an approximation of π)

h <- function(x){
return(exp(x-xˆ2))

}
inv_sigmoid <- function(x){

return(log(x/(1-x)))
}
g <- function(x){

return(exp(-(inv_sigmoid(x))ˆ2)/(x*(1-x)))
}
I_1 <- mean(h(rexp(10000, 1)))
I_2 <- mean(g(runif(10000, 0, 1)))/2
I_3 <- sqrt(pi)*mean((rnorm(10000, 0, 1/sqrt(2)) > 0))
estimators <- c(I_1, I_2, I_3)
errors <- sqrt(pi)/2 - estimators

> data.frame("Estimator" = estimators, "Error" = errors)
Estimator Error

1 0.8874769 -0.001249978
2 0.8811834 0.005043504
3 0.8904808 -0.004253889

(c) Nigel Petersen 13
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2 Analysis I – II

2.1 Exploring the Intermediate Value Theorem

The Intermediate Value Theorem is one of the more fundamental theorems that we’ll encounter on our
journey in the course, so it’s worth taking a bit of a deeper dive to explore. Like with many theorems,
there’s more than one way to prove it, though the three ways that we’ll see in this section each have
their own importance to us as budding mathematicians. As a typical “existence” based theorem, it
may not be the most useful in practice when we want to figure out where our intermediate value is
actually achieved within our domain. Fortunately, the first two proofs we’ll see are construction based,
meaning we’ll explicitly construct the desired point, though the second one will likely be more useful,
providing an algorithm we can employ in practice. Our third and final proof will require to take a bit
of a detour using topology, and tease a particular topological you’ll explore further in Analysis II.

2.1.1 The Classical Treatment

Theorem 2.1.1: Weak Intermediate Value Theorem
If f : [a, b] → R is continuous and f(a)f(b) < 0, there is c ∈ (a, b) such that f(c) = 0.

Proof. The condition f(a)f(b) < 0 says that one of the endpoints is positive and the other negative,
let’s assume f(a) < 0 < f(b) (otherwise apply the following to g := −f). Define the set

U = {c ∈ [a, b] : f(x) < 0 ∀x ∈ [a, c]}

As f(a) < 0 by assumption and [a, a] = {a}, it follows that a ∈ U , moreover U ⊆ [a, b] by construction,
and so α := sup(U) exists by completeness. We show α ∈ (a, b) such that f(α) = 0. Suppose f(α) > 0,
the left continuity of f at α (we can’t guarantee two-sided continuity at α since α = b is still technically
possible), there is δ1 > 0 such that f(x) > 0 for all x ∈ (α − δ1, α]. By the criterion for suprema, there
is c1 ∈ U such that α − δ1 < c1 ≤ α, and as c1 ∈ U, f(x) < 0 for all x ∈ [a, c1], and hence f(c1) < 0.
But c1 ∈ (α − δ1, α], and so f(c1) > 0, a contradiction. Thus f(α) ≤ 0 and hence α < b. Suppose
now that f(α) < 0, by the continuity of f at α ∈ (a, b), there is δ2 > 0 such that f(x) < 0 for all
x ∈ (α − δ2, α + δ2), and hence for all x ∈

[
α − δ2

2 , α + δ2
2

]
. Again by there criterion for suprema,

there is c2 ∈ U such that α − δ2 < c2 ≤ α. As c2 ∈ U, f(x) < 0 for x ∈ [a, c2] and hence f(x) < 0
for x ∈

[
a, α + δ2

2

]
. Thus f(x) < 0 for all x ∈

[
a, α + δ2

2

]
, and hence a + δ2

2 ∈ U , contradicting
α = sup(U). Thus α ∈ (a, b) and f(α) = 0.

Corollary 2.1.2: Intermediate Value Theorem

If f : [a, b] → R is continuous, and d is any value between f(a) and f(b), there is c ∈ [a, b] such
that f(c) = d.

Proof. Fix some d between f(a) and f(b). If d = f(a) or d = f(b), we’re done, so suppose d lies strictly
between them. Define g := f − d, so that g is continuous on [a, b] and g(a)g(b) < 0. By Theorem
2.1.1, there is c ∈ (a, b) such that g(c) = 0, namely f(c) = d.

While the above proof certainly gets the job done, it doesn’t exactly help us out if we wanted to
actually compute the value of c in practice. Though we explicitly construct it in the proof, it can be
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2 Analysis I – II 2.1 Exploring the Intermediate Value Theorem

difficult in practice to determine the set {c ∈ [a, b] : f(x) < 0 ∀x ∈ [a, c]} and hence determine c by
finding the supremum.

2.1.2 Thinking Computationally

Here we can take a different approach to proving our theorem that draws from a fairly simple recursive
algorithm, and make things formal with the nested interval property. Effectively, we will be performing
a “binary search” on the domain interval [a, b]. Let’s start with an example to get a feel for things

Example 2.1.3: Motivation

Approximate a root of the function f : [0, π
2 ] → R defined by f(x) = x − cos(x).

Solution. Note that f(0) = −1 < 0 < π
2 = f(π

2 ), so assuming that we already have the Intermediate
Value Theorem under our belt, we know for sure that there is a root. Let’s actually try to find it! Or
at the very least, find a way to approximate it. Set c = π

4 , the midpoint of the domain. The trick
will be to consider the sign of f(c) and use it to shrink our domain of interest down to either [0, c] if
f(c) > 0 or [c, π

2 ] if f(c) < 0. Note that f(c) ≈ −0.07829 < 0 and so we can consider [c, π
2 ] so that

once again we have the images of the endpoints having opposite signs. Consider further the midpoint
c2 = 3π

8 of [c, π
2 ]. As f(c2) ≈ −0.79541 < 0, we would consider [c2, π

2 ]. Suppose we set

[a0, b0] = [0, π
2 ] c1 = a0+b0

2 [a1, b1] = [c1, b0] c2 = a1+b1
2 [a2, b2] = [c2, b1]

We can continuously repeat this process of bisecting the current interval and choosing the half whose
endpoints map to values with different signs. Note that by doing so we’ll create a sequence of nested
intervals {[an, bn]}n∈N where hopefully the root of f that we expect to have will live in their intersection.

Theorem 2.1.4: Intermediate Value Theorem
If f : [a, b] → R is a continuous function and f(a)f(b) < 0, then there is c ∈ (a, b) such that
f(c) < 0.

Proof. As we saw in the previous example, our approach will be to make use of the nested interval
property. Define a0 = a, b0 = b, as f(a0)f(b0) < 0 by our assumption, let’s assume without loss of
generality that f(a) < 0 < f(b) and consider c1 = a0+b0

2 . If f(c1) = 0, then we’re done. If not we set

a1 =
{

c1 iff(c1) < 0
a0 iff(c1) > 0

b1 =
{

b0 iff(c1) < 0
c1 iff(c1) > 0

Now starting from [a1, b1], we still have f(a1) < 0 < f(b1), and so consider c2 = a1+b1
2 . Once again, if

f(c2) = 0, we’re done, but if not, we set

a2 =
{

c2 iff(c2) < 0
a1 iff(c2) > 0

b2 =
{

b1 iff(c2) < 0
c2 iff(c2) > 0

So that [a2, b2] ⊆ [a1, b1] ⊆ [a0, b0] and f(a2) < 0 < f(b2). Continuous this process inductively leaves
us with a nested collection of intervals {[an, bn]}∞

n=0 such that f(an) < 0 < f(bn) and bn − an < b−a
2n .

Thus, by the nested interval property, there is c ∈ R such that

{c} =
∞⋂

n=0
[an, bn]
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moreover (an) → c and (bn) → c. Thus, by the continuity of f , we have

f(an) → f(c) ≤ 0 and f(bn) → f(c) ≥ 0

Thus, as f(a), f(b) ̸= 0, we conclude c ∈ (a, b) is such that f(c) = 0.

In practice, we certainly won’t be able to iterate through this process indefinitely, so we need some
sort of stopping condition. Typically this is done in one of two ways, we either set a threshold on the
size of f(cn), or on the width of [an, bn], namely we stop either when f(cn) is sufficiently small, or our
interval of interest is sufficiently narrow. One final thing that I’ll mention is that in practice, often
times we will opt to write cn+1 = an+bn

2 as cn = an + bn−an
2 as the latter is more computationally

stable in a floating point number system. For those more interested in computational methods like
this one, I encourage to take our Numerical Methods class!

2.1.3 Fun with Topology: What really is an Interval?

Definition 2.1.5: Disconnections and Connected Sets
We say that a set S ⊆ R is disconnected if there exists disjoint open sets U, V ⊆ R such that
S ⊆ U ∪ V and U ∩ S, V ∩ S ̸= ∅, such a pair (U, V ) is called a disconnection. We say that a
set is connected if it is not disconnected

Though this will be our standard definition (those who are more familiar with topology already may
have noticed that we explicitly avoided mentioning a notion of the “subspace topology” in our definition
of a disconnection), we can rephrase it using a simple property of sets. Recall that

(S ∩ U) ∪ (S ∩ V ) = S ∩ (U ∪ V )

and so S ⊆ U ∪ V if and only if S = S ∩ (U ∪ V ), namely S ⊆ R is disconnected if and only if there
exists disjoint open sets U, V ⊆ R such that S ∩ U, S ∩ V ̸= ∅ and (S ∩ U) ∪ (S ∩ V ) = S.

Definition 2.1.6: Formal Intervals
A set I ⊆ R is called an interval if for every a, b ∈ I and every x ∈ R, if a < x < b then x ∈ I.

Though it may seem a bit strange and unnecessary at first, with a bit of thought hopefully this
definition should make sense. We say that a set I an interval if for any two distinct points x, y ∈ I, all
real numbers between x and y are also in I. Let’s see a simple example that will lay some groundwork
for the next result. Consider the set A = [1, 2] ∪ [4, 5]. This is a set that we know is not an interval,
and if we were to draw it on a number line, it would make sense that it shouldn’t be considered a
connected set (it’s the union of two separated pieces). Let’s verify that A is not connected by explicitly
constructing a disconnection. Note that 2, 4 ∈ A, yet 3 /∈ A, showing that A is in fact not an interval.
Additionally, by considering the open sets U = (−∞, 3) and V = (3, ∞), it follows that (U, V ) forms
a disconnection of A. The exact details are generalized to form the following Proposition.

Proposition 2.1.7
If I ⊆ R is not an interval, then I is disconnected.

Proof. As I is not an interval, negating Definition 2.1.6 says there is a < b ∈ I and x ∈ R such that
a < x < b and x /∈ I. Define U = (−∞, x), V = (x, ∞). Then clearly U and V are open an disjoint,
moreover a ∈ U ∩ I, b ∈ V ∩ I and as x /∈ I we have I ⊆ R \ {x} = U ∪ V . Thus (U, V ) form a
disconnection and hence I is disconnected.
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Proposition 2.1.8
If I ⊆ R is disconnected, then I is not an interval.

Proof. Suppose I ⊆ R admits a disconnection (U, V ). Pick x ∈ U ∩ I, y ∈ V ∩ I, as U ∩ V = ∅ we
have x ̸= y and so assume without loss of generality x < y. Define

A = {a ≥ x : [x, a] ∩ I ⊆ U ∩ I}

Note that x ∈ A and as y /∈ I ∩U we have y is an upper bound for A, thus by completeness c = sup(A)
exists. We show c /∈ I. Suppose c ∈ U ∩ I, then as c ∈ U and U is open, there is r > 0 such that
(c − r, c + r) ⊆ U and hence (c − r, c + r) ∩ I ⊆ U ∩ I. As c − r is not an upper bound, there is a0 ∈ A
such that c − r

2 < a0, and hence as [x, a0] ∩ I ⊆ U ∩ I we have[
x, c + r

2

]
∩ I =

([
x, c − r

2

]
∩ I

)
∪
([

c − r

2 , c + r

2

]
∩ I

)
⊆ U ∩ I

Namely, c + r
2 ∈ A, contradicting that c = sup(A) is an upper bound, and so c /∈ U ∩ I. Conversely,

suppose c ∈ V ∩ I. Again, as c ∈ V and V is open, there is r > 0 such that (c − r, c + r) ∩ I ⊆ V ∩ I.
Finally, as

(
c − r, c − r

2
]

∩ I ⊆ (c − r, c + r) ∩ I ⊆ V ∩ I, we have[
x, c − r

2

]
∩ I ∩ (V ∩ I) ̸= ∅ =⇒

[
x, c − r

2

]
∩ I ̸⊆ U ∩ I

Namely c − r
2 /∈ A and it follows that c − r

2 is an upper bound for A, contradicting that c = sup(A) is
the least upper bound. Thus, c /∈ V ∩ I and hence c /∈ I as I = (U ∩ I) ∪ (V ∩ I). Thus, as x ∈ A
and y is an upper bound for A we have x ≤ c ≤ y and moreover as x ∈ U ∩ I, y ∈ V ∩ I, we have
x < c < y. Thus, I is not an interval.

By combining the previous two propositions, we have that I ⊆ R is disconnected if and only if I is not
an interval, where the contrapositive says that a set is connected in R if and only if it is an interval.

Proposition 2.1.9

Let S ⊆ R and f : S → R a continuous function. If f(S) is disconnected then S is disconnected.

Proof. Let (U, V ) be a disconnection of f(S). By the continuity of f , as U, V ⊆ R are open we have
that f−1(U), f−1(V ) are open. We claim (f−1(U), f−1(V )) forms a disconnection of S. Indeed, note
that f−1(U) ∩ f−1(V ) = f−1(U ∩ V ) = ∅ as U ∩ V = ∅, moreover

f−1(U) ∪ f−1(V ) = f−1(U ∪ V ) ⊇ f−1(f(S)) ⊇ S

as f(S) ⊆ U ∪ V . Finally, Let y ∈ f(S) ∩ U , then writing y = f(x) for x ∈ S we have x ∈ S ∩ f−1(U)
and so f−1(U) ∩ S ̸= ∅ and similarly f−1(V ) ∩ S ̸= ∅. Thus, (f−1(U), f−1(V )) forms a disconnection
of S and hence S is disconnected.

Corollary 2.1.10: Intermediate Value Theorem

If f : [a, b] → R is a continuous function such that f(a)f(b) < 0, then there is c ∈ (a, b) such
that f(c) = 0.

Proof. As [a, b] ⊆ R is connected and f is continuous, by Proposition 2.1.9 f([a, b]) is connected.
Assume without loss of generality f(a) < 0 < f(b). Then as f([a, b]) is an interval we have 0 ∈ f([a, b])
by Definition 2.1.6 and the result follows.
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2.2 The Mean Value Theorem Integrals

Recall that the first Fundamental Theorem of Calculus says that if f : [a, b] → R is integrable, then
the function F : [a, b] → R defined by

F (x) =
∫ x

a
f(t)dt

is Lipschitz and morerover, F is differentiable at any point of continuity of f . In particular, if f is
continuous (and hence integrable), then F is differentiable, and so we’re able to use the Mean Value
Theorem on F to establish some elementary results. Often times, reducing the regularity of f from
continuity to plain integrability will fail preserve a result that follows from such an application of
the Mean Value Theorem. In this section, we will explore a theorem that holds regardless of the
continuity of f , and we’ll work our way up to proving by first assuming that we have some strong
regularity conditions than we may need.

2.2.1 Benefiting From Stronger Assumptions

Proposition 2.2.1

Let f, g : [a, b] → R be integrable function such that g is non-negative and f is continuous.
Then there is ξ ∈ [a, b] such that∫ b

a
f(x)g(x)dx = f(ξ)

∫ b

a
g(x)dx

Proof. As f is continuous, there is s, t ∈ [a, b] such that f(t) ≤ f(x) ≤ f(s) for all x ∈ [a, b], and so as
g is non-negative, by monontonicity we have

f(t)g(x) ≤ f(x)g(x) ≤ f(s)g(x) =⇒ f(t)
∫ b

a
g(x)dx ≤

∫ b

a
f(x)g(x)dx ≤ f(s)

∫ b

a
g(x)dx

Define F : [a, b] → R by F (x) = f(x)
∫ b

a g(x)dx. Note that F is continuous as a constant multiple of
a continuous function, and moreover as F (t) ≤

∫ b
a f(x)g(x)dx ≤ F (s) from our construction, by the

Intermediate Value Theorem there is ξ ∈ [a, b] such that∫ b

a
f(x)g(x)dx = F (ξ) = f(ξ)

∫ b

a
g(x)dx

Theorem 2.2.2
Let f, g : [a, b] → R be continuous functions such that g is continuously differentiable and
non-decreasing. Then there is ξ ∈ [a, b] such that∫ b

a
f(x)g(x)dx = g(a)

∫ ξ

a
f(x)dx + g(b)

∫ b

ξ
f(x)dx

Proof. Using the Fundamental Theorem of Calculus, the map F : [a, b] → R defined by F (x) =∫ x
a f(t)dt is an antiderivative of f as f is continuous. Moreover, as g is continuously differentiable, we

may apply integration by parts to
∫ b

a f(x)g(x)dx. Doing so gives∫ b

a
f(x)g(x)dx = [g(x)F (x)]ba −

∫ b

a
g′(x)F (x)dx
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Note that F and g′ are continuous, moreover g′ ≥ 0 as g is non-decreasing. From here we can apply
Proposition 2.2.1 to

∫ b
a F (x)g′(x)dx to obtain some ξ ∈ [a, b] such that∫ b

a
f(x)g(x)dx = [g(x)F (x)]ba −

∫ b

a
g′(x)F (x)dx

= g(b)F (b) − g(a)F (a) − F (ξ)
∫ b

a
g′(x)dx

= g(b)
∫ b

a
f(x)dx −

∫ ξ

a
f(x)dx(g(b) − g(a))

= g(a)
∫ ξ

a
f(x)dx + g(b)

∫ b

ξ
f(x)dx

2.2.2 Back to Basics

In order to prove the Mean Value Theorem for integrals without making any assumptions about
continuity, we’ll have to first establish several Lemmas to help us out.

Lemma 2.2.3: Abel’s Summation by Parts

Let {ai}n
i=1, {bi}n

i=1 be two collections of real numbers where Ak :=
∑n

k=1 ai. Then

n∑
i=1

aibi = Anbn +
n−1∑
i=1

Ai(bi − bi+1)

Proof. We proceed by induction on n ∈ N≥2. When n = 2, we have a1b1+a2b2 = (a1+a2)b2+a1(b1−b2),
establishing our base case. Now suppose the result holds for n ∈ N≥2 and consider a sum of n + 1
terms. Using the induction hypothesis, we can write

n+1∑
i=1

aibi = an+1bn+1 +
n∑

i=1
aibi = an+1bn+1 + Anbn +

n−1∑
i=1

Ai(bi − bi+1)

= (An+1 − An)bn+1 + Anbn +
n−1∑
i=1

Ai(bi − bi+1)

= An+1bn+1 +
n∑

i=1
Ai(bi − bi+1)

We can quickly establish another result as a relatively immediate consequence of Abel’s Lemma, one
that will help us out in proving our final Lemma before digging into the proof of the main theorem.

Corollary 2.2.4

Let {ai}n
i=1, {bi}n

i=1 be two collections of real numbers where Ak :=
∑n

k=1 ai. If bk ≥ bk+1 ≥ 0
for all k = 1, . . . , n − 1 and there are m, M ∈ R for which m ≤ Ak ≤ M for all k = 1, . . . , n,
then

mb1 ≤
n∑

k=1
akbk ≤ Mb1

(c) Nigel Petersen 19



2 Analysis I – II 2.2 The Mean Value Theorem Integrals

Proof. We can make use of Abel’s Lemma, namely as m ≤ Ak ≤ M

n∑
k=1

akbk = Anbn +
n−1∑
i=1

Ai(bi − bi+1) ≤ Mbn +
n−1∑
i=1

M(bi − bi+1)

= Mbn + M(b1 − bn)
= Mb1

n∑
k=1

akbk = Anbn +
n−1∑
i=1

Ai(bi − bi+1) ≥ mbn +
n−1∑
i=1

m(bi − bi+1)

= mbn + m(b1 − bn)
= mb1

Thus mb1 ≤
∑n

k=1 akbk ≤ Mb1 for all k.

Lemma 2.2.5
If f : [a, b] → R is integrable, Then

lim
∥P ∥→0

sup
x∈(a,b]

(U(f |[a,x], P ∩ [a, x]) − L(f |[a,x], P ∩ [a, x])) = 0

Proof. Let ε > 0, as f is integrable, there is δ > 0 such that for all partitions P of [a, b]

∥P∥ < δ =⇒ U(f, P ) − L(f, P ) <
ε

2
Fix a partition P of [a, b] such that ∥P∥ < δ. By properties of suprema, there is c0 ∈ (a, b] such that

sup
x∈(a,b]

(U(f |[a,x], P ∩ [a, x]) − L(f |[a,x], P ∩ [a, x])) < U(f |[a,c0], P ∩ [a, c0]) − L(f |[a,c0], P ∩ [a, c0]) + ε

2

≤ U(f, P ∪ {c0}) − L(f, P ∪ {c0}) + ε

2
≤ U(f, P ) − L(f, P ) + ε

2
< ε

From here, we are ready to state and prove stronger versions of Proposition 2.2.1 and Theorem 2.2.2

Proposition 2.2.6

Suppose f, g : [a, b] → R are integrable functions where g is non-negative and non-increasing.
Then there is ξ ∈ [a, b] such that∫ b

a
f(x)g(x)dx = g(a)

∫ ξ

a
f(x)dx

Proof. Let P = {x0, . . . , xn} be a partition of [a, b] with T = {a, t2, . . . , tn}. For i = 1, . . . , n, define
ai = f(ti)∆xi and bi = g(ti). As g is non-increasing and non-negative, we have bi ≥ bi+1 ≥ 0.
Moreover, note that by construction, for each k = 1, . . . , n

Ak :=
k∑

i=1
ai =

k∑
i=1

f(ti)∆xi = σ(f |[a,xk], P ∩ [a, xk], T ∩ [a, xk])
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Define F : [a, b] → R by F (x) =
∫ x

a f(t)dt, by the Fundamental Theorem of Calculus together with the
Extreme Value Theorem, there is xm, xM ∈ [a, b] such that F (xm) ≤ F (x) ≤ F (xM ) for all x ∈ [a, b].
For each k = 1, . . . , n, write Pxk

= P ∩ [a, xk] and Txk
= T ∩ [a, xk]. As each f |[a,xk] is integrable, we

have that ∣∣∣∣σ(f[a,xk], Pxk
, Txk

) −
∫ xk

a
f(x)dx

∣∣∣∣ ≤ U(f[a,xk], Pxk
) − L(f |[a,xk], Pxk

)

By expanding the absolute values and noting that
∫ xk

a f(x)dx = F (xk), we can write

− sup
x∈(a,b]

(U(f |[a,x], Px) − L(f |[a,x], Px)) + F (xm)︸ ︷︷ ︸
=:m

≤ −(U(f[a,xk], Pxk
) − L(f |[a,xk], Pxk

)) + F (xk)

≤ σ(f[a,xk], Pxk
, Txk

)︸ ︷︷ ︸
Ak

≤ U(f[a,xk], Pxk
) − L(f |[a,xk], Pxk

) + F (xk)
= sup

x∈(a,b]
(U(f |[a,x], Px) − L(f |[a,x], Px)) + F (xM )︸ ︷︷ ︸

=:M

Thus, we can apply the result of Corollary 2.2.4 to bound
∑n

i=1 aibi = σ(fg, P, T ), namely

mg(a) ≤
n∑

i=1
aibi = σ(fg, P, T ) ≤ Mg(a)

By Lemma 2.2.5 and the Squeeze Theorem, we have m → F (xm) and M → F (xM ) as ∥P∥ → 0, and
so g(a)F (xm) ≤

∫ b
a f(x)g(x)dx ≤ g(a)F (xM ). Finally, as H : [a, b] → R defined by H(x) = g(a)F (x)

is continuous, it follows by the Intermediate Value Theorem that there is ξ ∈ [a, b] such that∫ b

a
f(x)g(x)dx = H(ξ) = g(a)

∫ ξ

a
f(x)dx

Theorem 2.2.7: Integral Mean Value

Suppose that f, g : [a, b] → R are integrable functions where g is non-decreasing. Then there is
ξ ∈ [a, b] such that ∫ b

a
f(x)g(x)dx = g(a)

∫ ξ

a
f(x)dx + g(b)

∫ b

ξ
f(x)dx

Proof. Define h : [a, b] → R by h(x) = g(b) − g(x). As g is continuous and non-decreasing, it follows
that h is continuous and non-increasing and so applying Proposition 2.2.6 to f and h, we have that
there is ξ ∈ [a, b] such that∫ b

a
f(x)h(x)dx = h(a)

∫ η

a
f(x)dx ⇐⇒

∫ b

a
f(x)(g(b) − g(x))dx = (g(b) − g(a))

∫ ξ

a
f(x)dx

Rewriting everything in terms of f and g using the linearity of the integral, we can conclude that∫ b

a
f(x)g(x)dx = g(b)

∫ b

a
f(x)dx − g(b)

∫ ξ

a
f(x)dx + g(a)

∫ ξ

a
f(x)dx

= g(a)
∫ ξ

a
f(x)dx + g(b)

∫ b

ξ
f(x)dx
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2.3 Uniform Convergence and Differentiation

To start, recall that a sequence of functions (fn) on X ⊆ R is said to converge uniformly to a function
f : X → R if for every ε > 0, there is N ∈ N such that for all n ∈ N and x ∈ X

n > N =⇒ |fn(x) − f(x)| < ε

Recall further that last week in tutorial we showed that boundedness, integrability, and continuity were
all preserved by uniform convergence, while none of which were preserved by pointwise convergence.
Here, we’ll work to establish a relationship between uniform convergence and differentiability.

2.3.1 When Uniform Convergence is not Enough

As we’ve seen throughout tutorial, most properties that we’ve been working are preserved under uni-
form convergence, notably things like boundedness, (uniform) continuity and integrability. However,
differentiability is a bit less nicely behaved. In particular, we can construct a sequence of differentiable
functions converging uniformly to a non-differentiable function.

Example 2.3.1: Counterexample I

Define fn, f : (−1, 1) → R by fn(x) =
√

x2 + 1
n and f(x) = |x| for each n ∈ N. Then (fn) is a

sequence of differentiable functions, (fn) → f uniformly but f is not differentiable.

Proof. For any n ∈ N, as x2 + 1
n maps into (0, ∞), we have that fn is the composition of differentiable

functions and is hence differentiable by the chain rule. Moreover, f(x) = |x| is not differentiable at 0
and hence not on (−1, 1). We show that (fn) → f uniformly. Indeed, let ε > 0, pick N ∈ N such that

1√
N

< ε. For any n ∈ N and x ∈ (−1, 1), we have

0 ≤ |x| ≤
√

x2 + 1
n

≤ |x| + 1√
n

Thus n > N ⇒ |fn(x) − f(x)| ≤ 1√
n

< 1√
N

< ε, and so (fn) → f uniformly.

This may come as a surprise, and a natural first thought might be to add additional assumptions in
order to ensure the result we want. While this will eventually push us in the right direction, we can
first take a look at when this won’t work.

Example 2.3.2: Counterexample II

Define fn, f : R → R by fn(x) = sin(nx)
n and f ≡ 0 for each n ∈ N. Then (fn) is a sequence of

differentiable functions, (fn) → f uniformly, f is differentiable but (f ′
n) ̸→ f ′

Proof. Clearly both f and each fn are differentiable. Moreover given ε > 0, choose N ∈ N such that
1
N < ε, then for all n ∈ N and x ∈ R

n > N =⇒ |fn(x)| = | sin(nx)|
n

≤ 1
n

<
1
N

< ε

and so (fn) → f uniformly. However, f ′
n(x) = cos(nx) with does not converge pointwise on R as, for

example, f ′
n(1) = cos(n) fails to converge.
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2.3.2 Filling in the Cracks

Above we saw that additionally assuming that the uniform limit was differentiable wasn’t able to
guarantee for us that the sequence of derivatives even converged pointwise! Now, we’ll completely
overcompensate and add significantly stronger conditions to guarantee our result, then work on relaxing
as many as we can to ultimately strengthen our result.

Proposition 2.3.3

If (fn) is a sequence of continuously differentiable functions on [a, b], (f ′
n) → g uniformly and

(fn) → f uniformly, then f is differentiable and f ′ = g.

Proof. As each fn is continuously differentiable, (f ′
n) is a sequence of continuous (and hence integrable)

functions, and so by last week’s tutorial, g is continuous (and hence integrable). From last week once
again, we have that

lim
n→∞

∫ x

a
f ′

n(t)dt =
∫ x

a
g(t)dt

Thus, by the fundamental theorem of calculus together with the limit laws, we conclude

f(x) = lim
n→∞

(fn(x) − fn(a)) + f(a) = lim
n→∞

∫ x

a
fn(t)dt + f(a)

=
∫ x

a
g(t)dt + f(a)

By the fundamental theorem of calculus once again, as g is continuous, f(x) =
∫ x

a g(t)dt + f(a) is
differentiable with derivative g(x) and the result follows.

Now that we’ve managed to buff our hypotheses enough to ensure the conclusion, we can strip away as
many of the unnecessary assumptions we made as possible. For example, Nowhere in our proof did we
use the uniform convergence of (fn) to f . To use the limit laws as we did, we only required pointwise
convergence. Additionally, though the continuously differentiable assumption was necessary for our
above method of proof, it seems a bit too restrictive, so let’s reduce it down to regular differentiability.

Proposition 2.3.4

If (fn) is a sequence of differentiable functions on [a, b] for which (fn) → f and (f ′
n) → g

uniformly, then f is differentiable and f ′ = g.

Proof. Let c ∈ [a, b] and for simplicity let’s assume c ∈ (a, b). We aim to show that f is differentiable
at c with f ′(c) = g(c), which we can do by analyzing the difference quotient of f , comparing it to the
sequence of difference quotients of fn. Define ϕn, ϕ : [a, b] \ {c} → R by

ϕn(x) = fn(x) − fn(c)
x − c

and ϕ(x) = f(x) − f(c)
x − c

We claim that (ϕn) → ϕ uniformly. Indeed, we will make use of the Cauchy criterion and show first
that (ϕn) is uniformly Cauchy. Let ε > 0, as (f ′

n) → g uniformly and is hence uniformly Cauchy, there
is N ∈ N such that n, m > N ⇒ |f ′

n(x) − f ′
m(x)| < ε for all x ∈ [a, b]. Given n ∈ N and x ∈ [a, b] \ {c},

assume n, m > N and that without loss of generality x > c. By applying the mean value theorem to
fn − fm on [c, x], there is θ ∈ (c, x) such that

(fn − fm)(x) − (fn − fm)(c)
x − c

= f ′
n(θ) − f ′

m(θ)
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Finally, by regrouping the necessary terms, we have that

|ϕn(x) − ϕm(x)| =
∣∣∣∣fn(x) − fn(c)

x − c
− fm(x) − fn(c)

x − c

∣∣∣∣
=
∣∣∣∣(fn − fm)(x) − (fn − fm)(c)

x − c

∣∣∣∣
= |f ′

n(θ) − f ′
m(θ)|

< ε

Thus (ϕn) is uniformly Cauchy. To show that (ϕn) → ϕ uniformly, we show the convergence is
pointwise and conclude by the uniqueness of limits and the Cauchy criterion. Given x ∈ [a, b] \ {c},
by the limit laws, as (fn) → f uniformly (and hence pointwise) we have

lim
n→∞

ϕn(x) = lim
n→∞

(
fn(x) − fn(c)

x − c

)
= limn→∞ fn(x) − limn→∞ fn(c)

x − c

= f(x) − f(c)
x − c

= ϕ(x)

and so (ϕn) → ϕ uniformly. To conclude that f is differentiable at c with f ′(c) = g(c), as (f ′
n) → g

and (ϕn) → ϕ uniformly, there is N1, N2 ∈ N such that for all n ∈ N and x ∈ [a, b], y ∈ [a, b] \ {c}

n, m > N1 =⇒ |f ′
n(x) − f ′

m(x)| <
ε

4 and n, m > N2 =⇒ |ϕn(y) − ϕ(y)| <
ε

4
Fix n = max{N1, N2} + 1, as fn is differentiable at c, there is δ > 0 such that for all x ∈ [a, b]

0 < |x − c| < δ =⇒ |ϕn(x) − f ′
n(c)| =

∣∣∣∣fn(x) − fn(x)
x − c

∣∣∣∣ <
ε

4

Let x ∈ [a, b] and assume that 0 < |x − c| < δ. By the triangle inequality, we have∣∣∣∣f(x) − f(c)
x − c

− g(c)
∣∣∣∣ = |ϕ(x) − g(c)|

≤ |ϕ(x) − ϕn(x)| + |ϕn(x) − f ′
n(c)| + |f ′

n(c) − g(c)|

<
ε

4 + ε

4 + ε

4
< ε

It’s worth noting that we can strengthen this result even further by weakening our assumptions on the
convergence of (fn) and further leveraging the assumption that (f ′

n) → g uniformly. The strongest
form of our result appears as follows

Theorem 2.3.5: Uniform Differentiation
Let (fn) be a sequence of differentiable functions on [a, b], g : [a, b] → R be a function such that
(f ′

n) → g uniformly and suppose there is x0 ∈ (a, b) such that (fn(x0)) converges. Then there
is a differentiable function f : [a, b] → R such that (fn) → f uniformly and f ′ = g.

Proof. Using Proposition 2.3.4, it suffices to prove that (fn) is uniformly Cauchy. Let ε > 0, as
(f ′

n) → g uniformly, and is hence uniformly Cauchy, there is N1 ∈ N such that

n, m > N1 =⇒ |fn(x) − fm(x)| <
ε

2(b − a) ∀x ∈ [a, b]
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Similarly, as (fn(x0)) is convergent and hence Cauchy, there is N2 ∈ N such that n, m > N2 ⇒
|fn(x0) − fm(x0)| < ε

2 . Define N = max{N1, N2} ∈ N, let x ∈ [a, b] and assume n, m > N . If x = x0,
we have |fn(x0) − fm(x0)| < ε

2 . For x ̸= x0, assume without loss of generality x > x0, by applying the
mean value theorem to fn − fm on [x0, x], there is θ ∈ (x0, x) such that

|(fn − fm)(x) − (fn − fm)(x0)| = |f ′
n(θ) − f ′

m(θ)|(x − x0) ≤ |f ′
n(θ) − f ′

m(θ)|(b − a) (⋆)

Finally, by the triangle inequality together with (⋆), we have that

|fn(x) − fm(x)| ≤ |(fn − fm)(x) − (fn − fm)(x0)| + |fn(x0) − fm(x0)|

< |f ′
n(θ) − f ′

m(θ)|(b − a) + ε

2
<

ε

2(b − a)(b − a) + ε

2
= ε

Thus, (fn) is uniformly Cauchy and so there is f : [a, b] → R for which (fn) → f uniformly. By
Proposition 2.3.4, it then follows that f is differentiable with f ′ = g.
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3 Calculus of Several Variables

3.1 Limits of Multivariable Functions

In this course, we will almost exclusively deal with functions on R2. To show that such a limit exists,
we will either use direct evaluation (plugging in the limit point into the function), the squeeze theorem,
or polar coordinates, we will study the latter two in more detail in this handout. Let’s start with the
squeeze theorem and some related topics.

3.1.1 Squeeze Theorem and Friends

The squeeze theorem is a powerful tool for showing that a function approaches a proposed limit, and
we can use it in the same way as we did for functions of one variable. Let’s see the statement of the
theorem.

Theorem 3.1.1: Squeeze Theorem

Suppose f, g, h : U ⊆ R2 → R are functions defined on an open neighbourhood U of (a, b). If
there is an open neighbourhood D ⊆ U of (a, b) such that f(x, y) ≤ g(x, y) ≤ h(x, y) for all
(x, y) ∈ D \ {(a, b)}, and

lim
(x,y)→(a,b)

f(x, y) = L = lim
(x,y)→(a,b)

h(x, y)

Then lim(x,y)→(a,b) g(x, y) = L.

Unwrapping some of the potentially technical jargin, the squeeze theorem is saying that if we want to
find the limit of a function g(x, y) at (a, b), and we know that g lives between two functions f and h
near (a, b), except possibly at (a, b) (namely f(x, y) ≤ g(x, y) ≤ h(x, y) near (a, b), but not necessarily
at (a, b)) and the limits of f and h are the same at (a, b), then the limit of g must be their common
value. Before we get into some examples, note that the squeeze theorem involves inequalities, so let’s
have a look at some inequalities that will be helpful.

Proposition 3.1.2: Helpful Inequalities
Note that 3, 4, 5 and 6 are also true with y in place of x.

1. |x + y| ≤ |x| + |y|

2. ||x| − |y|| ≤ |x − y|

3. 0 ≤ x2 ≤ x2 + y2

4. 0 ≤ 1
x2+y2 ≤ 1

x2

5. 0 ≤ |x| ≤
√

x2 + y2

6. 0 ≤ 1√
x2+y2

≤ 1
|x|

7. 0 ≤
∣∣∣ xy

x2+y2

∣∣∣ ≤ 1
2

8. | sin(θ)| ≤ 1

9. | cos(θ)| ≤ 1

Now that we have some inequalities to help us out, let’s see an example of how we can use the squeeze
theorem to show that a limit exists.

Example 3.1.3

Show that lim
(x,y)→(0,0)

x2√
x2 + y2 = 0.
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Solution. Let’s use Proposition 3.1.2 to set up a helpful inequality. It looks like using inequality 3 will
be helpful here. Note that all of the terms in the in the function are non-negative, and so

0 ≤ x2√
x2 + y2 ≤ x2 + y2√

x2 + y2 =
√

x2 + y2

Using this inequality together with the Squeeze Theorem, we can see that

0 ≤ lim
(x,y)→(0,0)

y2√
x2 + y2 ≤ lim

(x,y)→(0,0)

√
x2 + y2 = 0

Thus, by the squeeze theorem, the limit is 0.

Note that there is an alternative way we could have used the squeeze theorem. We can write x2 as
|x||x|, using inequality 6 from Proposition 3.1.2, if we multiply all sides by x2, we get

0 ≤ x2√
x2 + y2 ≤ x2

|x|
= |x||x|

|x|
=⇒ 0 ≤ x2√

x2 + y2 ≤ |x|

Now we’re in a good position to use the Squeeze Theorem, much in the same way we did above. Doing
so gives

0 ≤ lim
(x,y)→(0,0)

x2√
x2 + y2 ≤ lim

(x,y)→(0,0)
|x| = 0

Once again by the Squeeze Theorem, we can conclude that the limit is 0.

Often when we try to bound our function to use the squeeze theorem, our bounds are in terms of
the absolute value of our function. In the case where we wish to show our function limits to 0, the
following proposition is helpful.

Proposition 3.1.4

If f is a function such that lim(x,y)→(a,b) |f(x, y)| = 0, then lim(x,y)→(a,b) f(x, y) = 0.

Proof. I will leave this as an exercise for you to try on your own, we will go through it in my week 6
tutorials. Hint: −|f(x, y)| ≤ f(x, y) ≤ |f(x, y)|.

Let’s see another example, one that uses a bit of everything we’ve seen so far.

Example 3.1.5: A More Challenging Example

Show that lim
(x,y)→(0,0)

5xαy

x2 + y2 = 0 for any value of α > 1.

Solution. Let α > 1 be given. We can make use of 7 from Proposition 3.1.2, which says that∣∣∣∣ xy

x2 + y2

∣∣∣∣ ≤ 1
2 (⋆)

We can multiply both sides of (⋆) by |5xα−1|, giving us the inequality

0 ≤
∣∣∣∣ 5xαy

x2 + y2

∣∣∣∣ ≤ 5|xα−1|
2
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Since α > 1 we have α − 1 > 0, meaning lim
x→0

xα−1 = 0. By the Squeeze Theorem, we can see that

0 ≤ lim
(x,y)→(0,0)

∣∣∣∣ 5xαy

x2 + y2

∣∣∣∣ ≤ lim
(x,y)→(0,0)

5
∣∣xα−1∣∣

2 = 0

Thus, lim(x,y)→(0,0)

∣∣∣ 5xαy
x2+y2

∣∣∣ = 0 ⇒ lim(x,y)→(0,0)
5xαy

x2+y2 = 0 by Proposition 3.1.4.

3.1.2 Showing a Limit Does Not Exist

Recall that in single variable calculus we said that a limit existed if and only if each of the one-sided
limits existed and agreed, namely

lim
x→a

f(x) = L ⇐⇒ lim
x→a−

f(x) = L = lim
x→a+

f(x) = L

Unfortunately, this notion does not carry over nicely to functions of several variables, as we can
approach our limit point (a, b) from an infinite number of directions, or paths. The generalization we
are interested in is that the limit of a multivariable function must be equal along every possible path
to the limit point in order to exist. Of course, it’s impossible to check every single path, so this is
not a practiacal way to determine if a limit exists. However, it does inspire the following criterion for
multivariable limits, which will provide us with a useful means of showing that a limit does not exist.

Proposition 3.1.6: Limit Criterion

Let f : U ⊆ R2 → R be a function on an open set U containing a point (a, b). If
lim

(x,y)→(a,b)
f(x, y) = L, then for any continuous path γ : (−ε0, ε0) → U such that γ(0) = (a, b)

and γ(t) ̸= (a, b) for t ̸= 0 we have lim
t→0

(f ◦ γ)(t) = L.

Let’s take a step back and see what this is saying. If we know that the limit exists, then we know
that the limit exists along any continuous path to the limit point. This gives us a nice way of showing
that a limit does not exist, namely the contrapositive of the Limit Criterion says that if there is
two continuous paths, along which the value of the limit differs, then the limit of the function does
not exists. More concretely, if f(x, y) is a function, and γ1, γ2 are two continuous paths such that
γ1(0) = (a, b) = γ2(0), and

lim
t→0

(f ◦ γ1)(t) ̸= lim
t→0

(f ◦ γ2)(t)

Then lim(x,y)→(a,b) f(x, y) does not exist. This will be our primary technique to show that a limit does
not exist. Let’s see an example of this technique in action.

Example 3.1.7

Show that the limit lim
(x,y)→(0,0)

2xy

x2 + 2y2 does not exist.

Solution. A good approach with limits in general is try to some simple paths to determine the be-
haviour of the function. Why don’t we try along the line y = x, which we can parameterize as the
path γ1(t) = (t, t) (here’s a place your parameterization skills will be useful!) To compute the limit
along the path γ1, we can compose f(x, y) = 2xy

x2+2y2 with γ1(t) and evaluate the limit as t → 0. Doing
so gives

lim
t→0

(f ◦ γ1)(t) = lim
t→0

2t2

t2 + 2t2 = 2
3
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This doesn’t tell us that the limit doesn’t exist, all it says is that if the limit does exist, then the value
must be 2

3 (the limit must agree along all paths to the limit point). If we can find another path to
(0, 0) that gives a different limit, we can conclude that the limit doesn’t exist. Let’s try along the
x-axis, namely along the path γ2(t) = (t, 0). Doing so gives

lim
t→0

(f ◦ γ2)(t) = lim
t→0

0
t2 = 0

We’ve found two paths that give different limits, so we can conclude that the limit does not exist!

Note that we can be a bit more strategic than trying paths at random. One thing we can do is try a
collection of paths. For example, what if we consider all linear paths to the origin of the form y = mx
for m ∈ R. We can parameterize these as γm(t) = (t, mt). If we compute the limit along the path
γm(t) and the value of the limit depends on m, then we can conclude that the limit does not exist.
(To see why, we can simply pick different values of m ∈ R) Let’s try this out, the limit along γm(t) is

lim
t→0

(f ◦ γm)(t) = lim
t→0

2t(mt)
t2 + 2(mt)2 = lim

t→0

2mt2

t2(1 + 2m2) = 2m

1 + 2m2

This depends on m ∈ R, and so we can conclude that the limit does not exist. Note that in our initial
answer, we used the paths that correspond to m = 1 and m = 0.

The collection of paths method is an effective one, it allows us to try many paths at the same time.
We’re not limited to just linear paths, we can try quadratic paths as well, namely y = mx2, which we
can write as αm(t) = (t, mt2), or even βm(t) = (mt2, t), the latter of which corresponds to x = my2,
or any other family of paths. Let’s see another example that’s a bit more stubborn.

Example 3.1.8: A Stubborn One

Let f(x, y) = x2y
x4+y2 . Show that lim

t→0
(f ◦ α)(t) = 0 along any linear path α(t) to the origin, but

lim
(x,y)→(0,0)

f(x, y) does not exist.

Solution. Linear paths to the origin are of the form y = mx or x = ny for m, n ∈ R. We can consider
each case. Let αm(t) = (t, mt), the limit along αm(t) is

lim
t→0

(f ◦ αm)(t) = t2(mt)
t4 + m2t2 = t2(mt)

t2(t2 + m2) = lim
t→0

mt

t2 + m2 = 0

Similarly, along the path αn(t) = (nt, t), the limit is

lim
t→0

(f ◦ αn)(t) = (n2t2)t
n4t4 + t2 = t2(n2t)

t2(n4t2 + 1) = lim
t→0

n2t

n4t2 + 1 = 0

This shows that the limit is 0 along any linear path to (0, 0), so we should try another type of path.
Note that the powers of x are always twice as high as the powers of y inside f(x, y). One way we can
even things out is to take quadratic paths where y = mx2, namely along γm(t) = (t, mt2). Doing so
gives

lim
t→0

(f ◦ γm)(t) = lim
t→0

t2(mt2)
t4 + m2t4 = lim

t→0

m2t4

t4(1 + m2) = m2

1 + m2

As the limit depends on the choice of m ∈ R, we conclude lim(x,y)→(0,0) f(x, y) does not exist.
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3.1.3 Polar Coordinates

Polar coordinates is our second main way of showing that a limit exists. The idea is as follows, polar
coordinates are defined by

(x, y) = G(r, θ) = (r cos(θ), r sin(θ))

so if we have a limit of the form lim
(x,y)→(0,0)

f(x, y), ideally where f(x, y) contains terms like x2 + y2,

we can compute the limit of f(G(r, θ)) = f(r cos(θ), r sin(θ)). Why this works is because our polar
coordinate system satisfies x2 + y2 = r2, and so as (x, y) → (0, 0), r2 → 0 and hence r → 0. The
difficulty of using polar coordinates lies with the fact that we don’t know anything about the behaviour
of θ. In general, it’s not true that θ → 0, because of this, we take a limit as r → 0 with the
understanding that θ is still a variable and hence not a constant. In a general case, we’ll have
something like this

lim
(x,y)→(0,0)

f(x, y) Polar Coordinates−−−−−−−−−−−→ lim
r→0

(f ◦ G)(r, θ) = lim
r→0

f(r cos(θ), r sin(θ))

Polar coordinates can be a useful means of calculating limits of functions of two variables, but we must
be careful when doing so. Remember that θ does not need to approach 0, we do not know
the behaviour of θ in general, only that r → 0. That being said, let’s see some examples of how
we can use polar coordinates to evaluate limits, and how things can go wrong if we are not careful.

Example 3.1.9

Evaluate the limit lim
(x,y)→(0,0)

sin(x2 + y2)
x2 + y2

Solution. We can see some x2 + y2 terms inside of the function, which is a good indicator that we
should try polar coordinates. When we change coordinates, we get the limit

lim
(x,y)→(0,0)

sin(x2 + y2)
x2 + y2

Polar Coordinates−−−−−−−−−−−→ lim
r→0

sin(r2)
r2

As we have terms that only involve r, we can treat this a limit of one variable, and use what we know
from single variable calculus to evaluate it. Recall that lim

x→0
sin(x)

x = 1, so if we make the substitution
x = r2, as r → 0, x = r2 → 0, and so

lim
r→0

sin(r2)
r2 = lim

x→0

sin(x)
x

= 1

Thus, we can conclude that lim(x,y)→(0,0)
sin(x2+y2)

x2+y2 = limr→0
sin(r2)

r2 = 1.

In this example, when we converted from Cartesian to polar, the resulting function was in terms of
only r, which worked out nicely for us. Let’s see what happens in a more complicated case, when the
resulting limit depends on θ as well.

Example 3.1.10

Determine lim
(x,y)→(0,0)

x3 + y3

x2 + y2 .
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Solution. Right away, we can see an x2 + y2 term in the denominator, which is a sign to try polar
coordinates. Changing coordinates gives us a new limit

lim
(x,y)→(0,0)

x3 + y3

x2 + y2
Polar Coordinates−−−−−−−−−−−→ lim

r→0

r3 cos3(θ) + r3 sin3(θ)
r2

We can factor the r3 term on the top, and cancel out with r2 on the bottom, leaving us with

lim
r→0

r(cos3(θ) + sin3(θ))

If we naively treat cos3(θ) + sin3(θ) as a constant since the limit is in terms of r, we get that the limit
is 0, since r → 0. Note that this is the correct answer, but the reasoning is wrong! Why this is 0 is
as follows, we can bound r(cos3(θ) + sin3(θ)) by something that does not involve θ, namely

0 ≤ |r(cos3(θ) + sin3(θ))| = |r cos3(θ) + r sin3(θ)|
≤ |r| | cos3(θ)|︸ ︷︷ ︸

≤1

+|r| | sin3(θ)|︸ ︷︷ ︸
≤1

≤ 2|r|

Note that we used 1,8 and 9 from Proposition 3.1.2 to bound our function. Now that our upper bound
is free of θ, and as 2|r| → 0 as r → 0, the squeeze theorem tells us that

0 ≤ lim
r→0

|r(cos3(θ) + sin3(θ))| ≤ lim
r→0

2|r| = 0 Prop. 3.1.4−−−−−−−→ lim
r→0

r(cos3(θ) + sin3(θ)) = 0

and so we can conclude that lim
(x,y)→(0,0)

x3+y3

x2+y2 = lim
r→0

r(cos3(θ) + sin3(θ)) = 0.

I’m sure you’re wondering why we had to do all of this extra work when it seems pretty obvious that
the limit should be 0. The idea is that whenever we have a limit with r → 0 of a function of the form
g(r)f(θ), where limr→ g(r) = 0, we need f(θ) to be bounded (by something free of θ) to conclude that
limr→0 g(r)f(θ) = 0 (by the squeeze theorem), because θ is not a constant, and so f(θ) is changing.
Let’s see an example of where ignoring this can lead to problems.

Example 3.1.11: Where Polar Coordinates Can Fail

Show that lim
(x,y)→(0,0)

x2 + y2

x
does not exist.

Solution. Let f(x, y) = x2+y2

x , and consider paths of the form α(t) = (mt2, t) for m ̸= 0, these
correspond to x = my2. Taking the limit along the path α(t) gives

lim
(x,y)→(0,0)

x2 + y2

x
= lim

t→0
(f ◦ α)(t) = lim

t→0

m2t4 + t2

mt2 = lim
t→0

m2t2 + 1
m

= 1
m

The limit clearly depends on the choice of m, and so the limit does not exist.

However, if we use polar coordinates, the function becomes r2

r cos(θ) = r
cos(θ) , if we naively treat θ as a

constant, we get that

lim
(x,y)→(0,0)

x2 + y2

x
= lim

r→0

r

cos(θ)
?= 0

since r → 0. As we saw above, this limit does not exist, which means our approach goes wrong at
some point. The reason why this fails is because θ is not a constant, and so the function r

cos(θ) is
undefined for θ = π

2 , and hence unbounded near θ = π
2 .
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To summarize, when you are using polar coordinates to evaluate a limit, and you are left with terms
involving both r and θ, you need to bound the entire function by something that does not depend on
θ, and use the squeeze theorem, as in Example 3.1.10. We can formalize this into a Criterion that we
can use to help us out.

Proposition 3.1.12: Boundedness Criterion

Suppose f(x, y) is a function such that f(r cos(θ), r sin(θ)) = g(r)h(θ) for single variable func-
tions g and h. If h is globally bounded, namely there is D > 0 such that |h(θ)| ≤ D for all θ
and limr→0 g(r) = 0, then lim(x,y)→(0,0) f(x, y) = 0.

Proof. Using polar coordinates, by assumption we have that f(r cos(θ), r sin(θ)) = g(r)h(θ), so

lim
(x,y)→(0,0)

f(x, y) = lim
r→0

f(r cos(θ), r sin(θ)) = lim
r→0

g(r)h(θ)

By assumption, we know that |h(θ)| ≤ D for all θ, so using the squeeze theorem will be a good idea.
Note that |g(r)h(θ)| = |g(r)||h(θ)| ≤ D|g(r)|, and by the squeeze theorem, it follows that

lim
r→0

−Dg(r) ≤ lim
r→0

g(r)h(θ) ≤ lim
r→0

Dg(r)

As limr→0 g(r) = 0, by the limits laws, limr→0 ±Dg(r) = 0, and so by the squeeze theorem

lim
(x,y)→(0,0)

f(x, y) = lim
r→0

g(r)h(θ) = 0

Example 3.1.13

Use the boundedness criterion to show that lim
(x,y)→(0,0)

x3 + y3

x2 + y2 = 0.

Proof. As we saw in Example 3.1.10 we can write x3+y3

x2+y2 in polar coordinates as r(cos3(θ) + sin3(θ)).
Here we can see g(r) = r and h(θ) = cos3(θ) + sin3(θ). Certainly lim

r→0
g(r) = 0, and by the triangle

inequality
|h(θ)| = | cos3(θ) + sin3(θ)| ≤ | cos3(θ)| + | sin(θ)| ≤ 2

Thus, by Proposition 3.1.12, we can conclude that lim(x,y)→(0,0)
x3+y3

x2+y2 = 0.
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3.1.4 Proofs of Theorems and Propositions (Optional)

As noted, this section is completely optional, and you are by no means required to understand any of
this. I include the proofs for those interested, and for the sake of completeness. Both of the theorems
we’ll prove here can be stated for functions on Rn, and so we will state and prove the more general
results, with the understanding that the proofs will suffice for theorems above when n = 2. We can
begin by introducing the formal definition of a limit.

Definition 3.1.14: Formal Limits
Let a ∈ Rn and f : U → R a function defined on an open neighbourhood of a, except possibly
at a. We say that the limit of f(x) as x approaches a is L if

(∀ε > 0)(∃δ > 0)(∀x ∈ U)[0 < ∥x − a∥ < δ =⇒ |f(x) − f(a)| < ε]

In which case we write limx→a f(x) = L.

Theorem 3.1.15: Squeeze Theorem
Suppose f, g, h : U ⊆ Rn → R are functions defined on an open neighbourhood U of a ∈ Rn. If
there is an open neighbourhood D ⊆ U of a such that f(x) ≤ g(x) ≤ h(x) for all x ∈ D \ {a},
and

lim
x→a

f(x) = L = lim
x→a

h(x)

Then limx→a g(x) = L.

Proof. Let ε > 0 be given, as lim
x→a

f(x) = L and lim
x→a

h(x) = L, ∃δ1, δ2 > 0 such that

0 < ∥x − a∥ < δ1 ⇒ |f(x) − L| < ε and 0 < ∥x − a∥ < δ2 ⇒ |h(x) − L| < ε (1)

Take δ = min{δ1, δ2} > 0 and suppose 0 < ∥x − a∥ < δ. Then from (1) we have

−ε < f(x) − L and h(x) − L < ε

Using the inequality f(x) ≤ g(x) ≤ h(x), we can subtract L from each term and combine with the
conditions from (1) to get

−ε < f(x) − L ≤ g(x) − L ≤ h(x) − L < ε ⇐⇒ |h(x) − L| < ε

Proposition 3.1.16: Limit Criterion

Let f : U ⊆ Rn → R be a function on an open set U containing a point a ∈ Rn. If lim
x→a

f(x) = L,
then for any path γ : (−ε0, ε0) → U such that γ(0) = a and γ(t) ̸= a for t ̸= 0 we have
limt→0(f ◦ γ)(t) = L.

Proof. Let ε > 0 be given, as lim
x→a

f(x) → L and γ is continuous (at t = 0), ∃δ, δ1 > 0 such that

0 < ∥x − a∥ < δ1 ⇒ |f(x) − L| < ε and 0 < |t| < δ ⇒ 0 < ∥γ(t) − a∥ < δ1 (2)

Note that ∥γ(t) − a∥ > 0 as γ(t) ̸= a for all t ̸= 0 by assumption. Putting everything together from
(2) gives

0 < |t| < δ ⇒ 0 < ∥γ(t) − a∥ < δ1 ⇒ |f(γ(t)) − L| < ε
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4 Student Reviews

Calculus of Several Variables

1. Great job! This tutorial class has honestly been so enjoyable. I was able to clarify my questions
and was really able to grasp new concepts. [Fall 2020]

2. I really liked the way of teaching as we went along during the tutorial. Outside of the tutorial,
the solutions posted were very in-depth and helpful. Thank you Nigel, you really helped me out
this semester! All the best with everything! [Fall 2020]

3. I liked how Nigel answered everyone’s questions and would stay longer to just talk about random
university courses and stuff. It was a fun learning environment. Also the posted notes were very
detailed and clear. [Summer 2021]

4. I think the structure of the tutorial worked well, with a few minutes for the students to work on
the problems themselves, then later taking it up as a group. I found it very helpful in improving
my understanding of the content. [Summer 2021]

5. Please continue explaining the theorems and going through the questions in detail. Also, I really
like how you choose specific questions that covered a lot of the important techniques we needed
to know. [Fall 2021]

6. Probably one of the most helpful math tutorials I’ve had in university. [Fall 2021]

7. All of the questions we did during the tutorial were extremely helpful! thank you making math
more enjoyable! thank you for a great semester! [Winter 2022]

8. Very helpful, any questions or doubts were cleared and thoroughly explained well. Types of
questions we tackled were extremely beneficial to our understanding and helped with midterms.
Even when a question was difficult, we walked through it step by step and I never felt anything
was explained poorly. [Winter 2022]

Analysis I & Analysis II

1. Overall, the TA was really helpful and did a great job at teaching the students. [Fall 2022 -
Winter 2023]

2. I found the tutorials very helpful, and the clear solutions helped when reviewing for tests. They
also helped when working on the homework. Overall, tutorials were fun and informative. [Fall
2023 - Winter 2024]

3. Nigel’s tutorial always keeps up to date, he put things that we didn’t learn in class but were super
useful in practice in his tutorial. He’s always super willing to answer our questions, whether
they’re dumb or not, and he explains them clearly during all of his office hours. When grading
our homework, he always give us useful feedback that can help us improve in proof strategies as
well as our understanding of the concepts. I really appreciate Nigel’s help through this school
year! [Fall 2023 - Winter 2024]

4. Tutorials were extremely useful, helping me get adjusted to the course coming from MAT137 and
giving me very useful problems related to the homework. [Winter 2024]
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