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Abstract

In many Machine Learning applications, obtaining a fully labelled set of training
data is often infeasible and labour-intensive, suggesting a need to generalize existing
techniques to learn from data in a more restricted setting. Many methods in Semi-
Supervised Learning aim to solve this problem, and in the particular case of binary
classification, Positive-Unlabelled Learning is a sub-discipline that aims to solve
this problem in a setting in which only positively labelled outcomes are observed,
a setting which is especially present in Health Care, with Electronic Health Record
Data. We propose a Positive-Unlabelled Learning method making use of a single
continuous surrogate feature, under the assumption of conditional independence of
the remaining features given the response. Our proposed method performs very
well in comparison to benchmark methods in simulation studies under a correctly
specified model, and shows potential for robustness in a setting where independence
assumptions are violated.

1 Introduction

Over the last several decades, improvements in Machine Learning methods have made a significant
impact on many aspects of our society, from finance to healthcare and even entertainment. As
Machine Learning continues to grow in popularity, new problems in many adjacent disciplines
continue to present themselves, and Machine learning is becoming a more popular first choice for
tackling them. In particular, Health Care is one such field that has enjoyed many of the advancements
in Machine Learning over the past several decades, particularly as a result of the introduction of
Electronic Health Record (EHR) data. With Health Care being one of the most integral parts of
our society, advancements in the Health Care system are among the most crucial. Unfortunately,
many techniques in Supervised Learning fail at the hands of Health Care because of the difficulty of
obtaining a sufficiently large sample of well-labelled data. The difficulty of this is present in other
applications as well, all encompassed in the area on Semi-Supervised Learning (SSL), a branch of
Supervised Learning in which a fully labelled data set is not available, and learning must be done
on one where only a subset of observations have labels. A particularly important context within
SSL is that of Positive-Unlabelled (PU) Learning, where the outcome of interest is binary, and in
addition to only having a subset of labelled observations, only labels in the positive class are present.
Many applications in Health Care, particularly disease prediction/phenotyping, can be phrased in a
PU Learning framework, but applications in other disciplines, such as personalized advertising and
recommender systems can also be thought of in a PU Learning setting. Over the last two decades,
there have been several methods and approaches introduced to solve problems in PU Learning, and
particularly in the Health Care setting, several have made use of Anchor and Surrogate variables.
Surrogate variables are variables known to be highly predictive of the response, and can potentially
be used as an auxiliary response when fully labelled data is difficult or labour-intensive to obtain. In
such settings, we seek to bridge the gap between the responses we do not have access to, and the data
that we observe, using surrogate variables.



2 Materials and Methods

Traditionally, we consider triples of the form (X,S, Y ) where X ∈ Rp is a vector of features, S ∈ Rq
is a vector of surrogate features, and Y ∈ {0, 1} is the binary response. In the case that q = 1, we
say that S is an anchor variable, and if S ∈ {0, 1}, a binary anchor variable. There are a number of
existing methods that make use of surrogate and anchor variables, here we introduce the Maximum
Likelihood (ML) algorithm [3] making use of binary anchors and an automated feature selection
algorithm [1] making use of surrogate features.

2.1 Prior Methods

2.1.1 ML Algorithm

Assume observations consist of triples (X, S, Y ) where X ∈ Rp is a vector of features, S ∈ {0, 1}
is a binary anchor variable, and Y ∈ {0, 1} is the binary response. Further assume that we observe
an independent and identically distributed collection of random variables {(Xi, Si)}Ni=1, and only a
subset of {Yi}Ni=1, each with the positive label. Define the anchor sensitivity c = P(S = 1 | Y = 1),
the phenotype prevalence q = P(Y = 1) and the anchor prevalence by h = P(S = 1). Impose
the assumptions that the anchor S is chosen to be highly predictive of the response, namely that
P(Y = 1 | S = 1) = 1, and further that S is chosen such that the anchor sensitivity is independent
of the features, namely

c = P(Y = 1 | S = 1) = P(Y = 1 | S = 1,X) (1)

Finally, Fit a working logistic regression model; logitP(Y = 1 | X, β) = XTβ, by maximum
likelihood, where it follows from (1) that cP(Y = 1 | X) = P(S = 1 | X), and hence the likelihood
of {(Xi, Si)}Ni=1 can be written as

L(β, c) =

N∏
i=1

P(Xi, Si = 1)SiP(Xi, Si = 0)1−Si

∝
N∏
i=1

[cP(Y = 1 | Xi, β)]
Si [1− cP(Y = 1 | Xi, β)]

1−Si

Prediction is then based on the relationship cP(Y = 1 | X) = P(S = 1 | X) and the maximum like-
lihood estimates β̂mle and ĉmle of β and c obtained by maximizing the above likelihood. Furthermore,
additional quantities of interest, like h and q can be estimated using plug-in estimators involving β̂mle
and ĉmle.

2.1.2 Automated Feature Selection Algorithm

Assume observations consist of triples (X,S, Y ) where X ∈ Rp is a vector of features, S ∈ Rq is a
vector of surrogate features, and Y ∈ {0, 1} is the binary response. Further assume that we observe
an independent and identically distributed collection of random variables {(Xi,Si)}Ni=1, and only
a subset of {Yi}Ni=1, each with the positive label. Finally, assume that S ⊥ X | Y , and that Y | X
follows a GLM with a known, smooth link function. The model consists of two main steps, clustering
and regularized estimation. In the clustering step, impose a parametric mixture model

S ∼ τfθ1(S | Y = 1) + (1− τ)fθ0(S | Y = 0) τ = P(Y = 1)

By obtaining maximum likelihood estimators θ̂i of each θi, estimate πS = P(Y = 1 | S) by

π̂S =
τfθ1(S | Y = 1, θ1 = θ̂1)

τfθ1(S | Y = 1, θ1 = θ̂1) + (1− τ)fθ0(S | Y = 1, θ0 = θ̂0)

Using π̂S as a response, the regularized estimation step consists of fitting a penalized quasi-logistic
regression of π̂S against the features X by maximum likelihood, using Adaptive LASSO (ALASSO).
Namely, the penalty function for regression is

R(β) =

p∑
j=1

|βj |/|β̃j |
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where the β̃j’s are the estimated non-intercept coefficients obtained by fitting an unpenalized quasi-
logistic regression of π̂S against the features X, and the hyperperameter λ∗ in the penalized regression
is chosen so that

√
Nλ∗(N) → ∞ and λ∗(N) → 0 as N → ∞. The estimated active set is then

taken as Â = {j ∈ [N ] : β̂j 6= 0}. The final selected set of coefficients is then determined by a
resampling of the data to improve estimation. Define by Rm the indices corresponding to the mth

resample of the data, Nb the size of each resample, namely |Rm| = Nb for all m ∈ [M ], where M
is the total number of resamples, and β̂(m)

j the estimated jth coefficient corresponding to the mth

resample. For a fixed cutoff ρcut ∈ (0, 1), feature selection is then based on

1

M

M∑
i=1

I(β̂(m)
j = 0) < ρcut (2)

namely feature j is selected when (2) is satisfied.

2.2 The SAPUL Method

Assume our data consists of triples (X, S, Y ), where X ∈ Rp is a vector of features, S ∈ R is
a surrogate feature, and Y ∈ {0, 1} is the binary response. Further assume that we observe an
independent and identically distributed collection of random variables {(Xi, Si)}Ni=1, and only a
subset of {Yi}Ni=1, each with the positive label. Finally, assume that S ⊥ X | Y , and that Y | X, S is
logistic with

logitP(Y = 1) = β0 + β
[
XT S

]
The method consists of two steps, initial estimation and positive-labelled regression. First, we
obtain an estimator β̂surr by fitting a penalized regression of S onto X by maximum likelihood using
ALASSO. To use ALASSO, we obtain an initial estimator β̂init by fitting a ridge regression of S on
X by maximum likelihood, with penalty hyperparameter λinit = p

N , namely

β̂init = argmin
β∈Rp+1

{
1

N

N∑
i=1

`i(β,xi) + λinit‖β‖22

}
where `i(β;Xi) denotes the negative log-likelihood of the ith observation. Then, using the non-
intercept estimates β̂init

j , we compute β̂surr ∈ Rp+1as

β̂surr = argmin
β∈Rp+1

 1

N

N∑
i=1

`i(β,xi) + λ∗
p∑
j=1

βj

β̂init

 (3)

where λ∗ is chosen to minimize the adjusted Bayes Information Criterion, defined by

BICadjusted = −2`(β̂) + pmin{NB , log(N)}

where p =
∑p
i=1 I(β̂i 6= 0) is the degrees of freedom, and B, the BIC factor, is a hyperparameter.

Often times obtaining a solution to (3) can be difficult in practice, and so as per [2], we may employ
a quadratic approximation to the likelihood as done in [1]. We begin the second step by obtaining the
linear predictor L = Dβ̂surr

−0 from β̂surr, where β̂surr
−0 is the vector of non-intercept coefficient estimates,

and D is the design matrix of the observations, namely

Li = Xi1β̂
surr
1 + · · ·+Xipβ̂

surr
p

Lastly, define di = (Si, Li)
T and ai to be the ith observed label, we regress di onto ai by maximum

likelihood. We impose a logistic regression model P(ai = 1 | di, θ) = c0 · logit−1(α0 + dTi α)
where α = (α0, α1, α2)T and θ = (c0, α

T )T as per [3]. Write

θ̂ = argmin
θ∈R4

{
N∑
i=1

`i(θ;di)

}
so that as per [4], the final estimator β̂SAPUL ∈ Rp+2 is given by

β̂SAPUL =
[
θ̂1 θ̂2 θ̂3β̂

surr
1 · · · θ̂3β̂

surr
p

]
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3 Numerical Studies

We test the performance of the SAPUL method in a range of simulated settings, where all model
assumptions hold, and in settings were the conditional independence of X and S fails. In all settings,
the simulated data consists of N = 20, 000 unlabelled observations, and varying values of n and
p, the number of labelled observations, and the dimension of the features, namely we consider
all combinations with n ∈ {50, 100, 200} and p ∈ {50, 100}. The response Y is generated from
a Bernoulli distribution with success rate 0.3, and labelled responses are randomly selected from
{Yi}Ni=1. The features X ∈ Rp are generated from a multivariate normal distribution as follows

Xi ∼ Np(0,Σ) + µi µTi = [1 + β01yi · · · 1 + β0pyi]

where β0 = (β
(1)T

0 , β
(2)T

0 )T ∈ Rp is initialized in block form with blocks

β
(1)T

0 = [−0.6 0.6 0.3 −0.3 0.3]

and β(2)
0 = 0 ∈ Rp−5, and the covariance matrix Σ satisfies Σij = ρ|i−j| where ρ = 0.3. Similarly,

the surrogate S is generated from a univariate normal distribution as follows

Si ∼ N(1 + γ0yi, 1) γ0 = 1.5

Finally, all models fit based on the adjusted BIC will use hyperparameter B = 0.1. In simulation
settings where the conditional independence assumption is removed, S will be transformed using one
of the columns of X, namely we will have either Si = Xi1 or Si = Xi2 (in simulation settings 7 and
8 respectively, as in Table 1)

3.1 Simulation Settings

We consider comparing the SAPUL method to several other methods, some of which making use of
the underlying labels we assume to not have full access to. Some of the additional methods are that
of an ideal setting, where we have access to all of the underlying labels, and a surrogate only setting,
where we have access to none of the labels, and treat the surrogate as a response variable. Each of the
methods used are described below in more detail.

3.1.1 Ideal Method

Assuming access to all of the underlying labels, we fit a penalized logistic regression of the responses
Y against the features X and the surrogate S by maximum likelihood, using ALASSO and an a
quadratic approximation to the likelihood as in [2]

3.1.2 Surrogate-only Method

We assume no access to any of the labels, and obtain an estimator β̂surr as done in the SAPUL method.

3.1.3 Surrogate Assisted Method

We follow a similar approach to the proposed SAPUL method, but makes use of the underlying
labels in the data, effectively an ideal SAPUL setting, rather than strictly an ideal setting. We begin
by obtaining β̂surr in the same way as in the SAPUL method, but we obtain an additional estimator
γinit ∈ R3 by fitting a standard logistic regression of the first 100 observations against (di, Si), and
obtain a final estimator

β̂sass =
[
γ̂init
0 γ̂init

1 β̂surr
1 γ̂init

2 · · · β̂surr
p β̂init

3

]
∈ Rp+2

3.1.4 Semi-Supervised Method

Assuming access to a subset of the underlying observations, namely we observe {(Xi, Si, Yi)}ni=1

for n < N , we obtain an estimate β̂(n) ∈ Rp+2 by fitting a penalized logistic regression of Yi against
Xi and Si by maximum likelihood using ALASSO.

With the semi-supervised method, we take values n = 100 and n = 200, giving us 6 total methods to
compare.
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3.2 Simulation Results

The metric used for comparing performance is the Area Underneath the Receiver Operating Charac-
teristic curve (AUC), which is computed based on the 200 simulations run in each particular setting.
The averaged AUC estimates among all simulations across all models are summarized in Table 1.

Setting AUC
n p corr true surr sass sup-100 sup-200 sapul

100 50 FALSE 0.9184 0.8136 0.9139 0.7395 0.8158 0.9120
100 100 FALSE 0.9184 0.8090 0.9121 0.5000 0.7369 0.9103
200 50 FALSE 0.9185 0.8132 0.9143 0.7321 0.8104 0.9043
200 100 FALSE 0.9183 0.8086 0.9118 0.5000 0.7349 0.9006
50 50 FALSE 0.9184 0.8135 0.9144 0.7365 0.8158 0.9017
50 100 FALSE 0.9185 0.8093 0.9124 0.5000 0.7371 0.9031
200 50 TRUE 0.9182 0.7234 0.8523 0.5000 0.7349 0.8260
50 100 TRUE 0.9183 0.4329 0.7767 0.5000 0.7366 0.7263

Table 1: Averaged AUC estimates across simulation settings

Among the settings where CORR, an indicator for the conditional independence assumption to be
violated, is FALSE, we can see that the performance of the SAPUL method is highly comparable to
the ideal method (denoted TRUE) and the surrogate assisted setting (denoted SASS). As both make use
of the underlying labels, it is expected that both out perform the SAPUL method, but the difference is
small enough to suggest SAPUL method performs very well in comparison.

In the last two settings, where we violate the conditional independence of the features and surrogate,
we have moderate reductions in averaged AUC across all non-ideal methods, and the performance of
the SAPUL method is less comparable to the surrogate assisted method as in the previous settings,
but the difference is still small enough to be comparable. In the second to last setting in particular, we
can see some evidence of robustness of the method under violated assumptions.

4 Conclusion

We proposed a new PU Learning method leveraging surrogate features, and building off of results
presented in [3] and [1]. We tested the performance of our proposed method using the AUC metric in
several simulation settings, working under our method assumptions and with violated assumptions,
against several other methods. With our assumptions in tact, we found that the performance of
the SAPUL method was highly comparable with both of the other ideal methods in the simulation
study, with averaged AUC estimates consistently in the [0.9, 0.92] range. When the conditional
independence of X and S was violated, we saw a reduction in averaged AUC estimates, falling
withing the [0.72, 0.83] range, showing potentially some robustness, but nothing significant. There
is opportunity in future to expand on the proposed SAPUL method, potentially leveraging higher
dimensional surrogate features rather than a single surrogate variable, and a generalized approach
that behaves more robustly when faced with violated assumptions.
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